Skip to main content
Log in

Sintering of Titanium in Vacuum by Microwave Radiation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effectiveness of microwave (MW) sintering has been demonstrated on many ceramic systems, a number of metallic systems, and metal-ceramic composites, but remains ambiguous for Ti powder materials. This work presents a detailed comparative study of MW and conventional sintering of Ti powder compacts in vacuum. It is shown that MW radiation is effective in heating Ti powder compacts with the assistance of MW susceptors; it delivered an average heating rate of 34 K/min (34 °C/min), compared to 4 K/min (4 °C/min) by conventional vacuum heating in an alumina-tube furnace. Microwave radiation resulted in similar densification with well-developed sinter bonds. However, MW-sintered samples showed higher bulk hardness, a harder surface shell, and coarser grains. The difference in hardness is attributed to the difference in the oxygen content, supported by X-ray photoelectron spectroscopy analyses. The mechanisms of MW heating for metal powder compacts are discussed in the context of the sintering of Ti powder materials and attributed to three combined effects. These include heat radiation from the MW susceptors at low temperatures, enhanced MW absorption due to the transformation of the TiO2 film on each Ti powder particle to oxygen-deficient Ti oxides, which are MW absorbers; and the volumetric heating of Ti powder particles by eddy currents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. In the case in which microwave susceptors are used, microwave sintering has also been referred to as “microwave assisted sintering”[21] or “hybrid microwave sintering.”[22]

References

  1. Y.V. Bykov, K.I. Rybakov, and V.E. Semenov: J. Phys. D: Appl. Phys., 2000, vol. 34, pp. R55–R75.

    Article  Google Scholar 

  2. R. Roy, R. Peelamedu, L. Hurtt, J. Cheng, and D. Agrawal: Mater. Res. Innov., 2002, vol. 6, pp. 128–40.

    Article  CAS  Google Scholar 

  3. J. Wang, J. Binner, B. Vaidhyanathan, N. Joomun, J. Kilner, G. Dimitrakis, and T.E. Cross: J. Am. Ceram. Soc., 2006, vol. 89, pp. 1977–84.

    Article  CAS  Google Scholar 

  4. D.E. Clark, D.C. Folz, and J.K. West: Mater. Sci. Eng. A, 2000, vol. 287, pp. 153–58.

    Article  Google Scholar 

  5. M.G. Kutty, S. Bhaduri, J.R. Jokisaari, and S.B. Bhaduri: Ceram. Eng. Sci. Proc., 2001, vol. 22, pp. 587–92.

    Article  CAS  Google Scholar 

  6. E.G. Pan and A.A. Ravaev: Mater. Lett., 2004, vol. 58, pp. 2679–83.

    Article  CAS  Google Scholar 

  7. R. Roy, D. Agrawal, J.P. Cheng, and S. Gedevanishvili: Nature, 1999, vol. 399, pp. 668–70.

    Article  CAS  Google Scholar 

  8. E. Breval, J.P. Cheng, D.K. Agrawal, and P. Gigl: Mater. Sci. Eng. A, 2005, vol. 391, pp. 285–95.

    Article  Google Scholar 

  9. D. Agrawal, J.P. Cheng, H. Peng, L. Hurt, and K. Cherian: Am. Ceram. Soc. Bull., 2008. vol. 87, pp. 39–44.

    CAS  Google Scholar 

  10. V.A. Duz, V.S. Moxson, and O.M. Ivasishin: in Ti-2007 Science and Technology, M. Ninomi, S. Akiyama, M. Ikeda, M. Hagiwara, K. Maruyama, eds., The Japan Institute of Metals, Karlsruhe, 2007, pp. 1067–70.

  11. M. Qian, C.J. Bettles, and G.B. Schaffer: in Sintering of Advanced Materials, Z.Z. Fang, ed., Woodhead Publishing, Cambridge, United Kingdom, 2010.

  12. G.I. Friedman: Int. J. Powder Metall., 1970, vol. 6, pp. 43–54.

    CAS  Google Scholar 

  13. V.D. Buchelnikov, D.V. Louzguine-Luzgin, G. Xie, S. Li, N. Yoshikawa, M. Sato, A.P. Anzulevich, I.V. Bychkov, and A. Inoue: J. Appl. Phys., 2008, vol. 104, pp. 113505-1–113505-10.

    Article  Google Scholar 

  14. J. Cheng, R. Roy, and D. Agrawal: J. Mater. Sci. Lett., 2001, vol. 20, pp. 1561–63.

    Article  CAS  Google Scholar 

  15. M. Suziki, M. Ignatenko, M. Yamashiro, M. Tannka, and M. Sato: ISIJ Int., 2008, vol. 48, pp. 681–86.

    Article  Google Scholar 

  16. M. Tanaka, H. Kona, and K. Maruyama: Phys. Rev. B, 2009, vol. 79, pp. 104420-1–104420-7.

    Article  Google Scholar 

  17. R.S. Dean, J.R. Long, F.S. Wartman, and E.L. Anderson: Trans. Am. Inst. Min. Metall. Eng., 1946, vol. 166, pp. 369–81.

    Google Scholar 

  18. M. Sato, H. Fukusima, F. Ozeki, T. Hayasi, Y. Satito, and S. Takayama: 2004 Joint 29th Int. Conf. on Infrared and Millimeter Waves and 12th Int. Conf. on Terahertz Electronics, Karlsruhe, 2004.

  19. M.G. Kutty, S. Bhaduri, and S.B. Bhaduri: J. Mater. Sci.: Mater. Med., 2004, vol. 15, pp. 145–50.

    Article  CAS  Google Scholar 

  20. T. Hayashi: Reports of Research Institute of Industrial Products Technology, Research Institute Industrial Products Technology, Gifu, 2005.

  21. M. Gupta and W.L.E. Wong: Scripta Mater., 2005, vol. 52, pp. 479–83.

    Article  CAS  Google Scholar 

  22. K.S. Tun and M. Gupta: J. Alloy Compd., 2008, vol. 466, pp. 140–45.

    Article  CAS  Google Scholar 

  23. Y. Fu, H. Du, S. Zhang, and W. Huang: Mater. Sci. Eng. A, 2005, vol. 403, pp. 25–31.

    Article  Google Scholar 

  24. R.M. Wang, C.L. Chu, T. Hu, Y.S. Dong, C. Cuo, X.B. Sheng, P.H. Lin, C.Y. Chung, and P.K. Chu: Appl. Surf. Sci., 2007, vol. 253, pp. 8507–12.

    Article  CAS  Google Scholar 

  25. A. Cottrell: An Introduction to Metallurgy, 2nd ed., IOM, London, 1975.

  26. A. Goldstein, W.D. Kaplan, and A. Singurindi: J. Eur. Ceram. Soc., 2002, vol. 22, pp. 1891–96.

    Article  CAS  Google Scholar 

  27. R.M. Anklekar, D.K. Agrawal, and R. Roy: Powder Metall., 2001, vol. 44, pp. 355–62.

    Article  CAS  Google Scholar 

  28. R. Peelamedu, M. Fleming, D. Agrawal, and R. Roy: J. Am. Ceram. Soc., 2002, vol. 85 pp. 117–22.

    Article  CAS  Google Scholar 

  29. M. Qian: Int. J. Powder Metall., 2010, vol. 46 (5), pp. 29–44.

    Google Scholar 

  30. T. Watanabe and Y. Horikoshi: Int. J. Powder Metall., 1976, vol. 12, pp. 209–14.

    CAS  Google Scholar 

  31. L.K. Keys and L.N. Mulay: Jpn. J. Appl. Phys., 1967, vol. 6, pp. 122–23.

    Article  CAS  Google Scholar 

  32. J.P. Cheng, D.K. Agrawal, S. Komarneni, M. Mathis, and R. Roy: Mater. Res. Innov., 1997, vol. 1, pp. 44–52.

    Article  CAS  Google Scholar 

  33. G.V. Samsonov: Handbook of the Physico-Chemical Properties of the Elements, IFI/Plenum, New York, NY, 1968.

  34. G.W. Scovil: J. Appl. Phys., 1956, vol. 27, pp. 1196–98.

    Article  CAS  Google Scholar 

  35. E.A. Brandes and G.B. Brook: Smithells Light Metals Handbook, Butterworth-Heinemann, Oxford, United Kingdom, 1998.

  36. K.I. Rybakov, V.E. Semenov, S.V. Egorov, A.G. Eremeev, I.V. Plotnikov, and Y.V. Bykov: J. Appl. Phys., 2006, vol. 99, pp. 023506-1–023506-9.

    Article  Google Scholar 

  37. P. Chhillar, D. Agrawal, and J.H. Adair: Powder Metall., 2008, vol. 51, pp. 182–87.

    Article  CAS  Google Scholar 

  38. M.A. Janney, H.D. Kimrey, M.A. Schmidt, and J.O. Kiggans: J. Am. Ceram. Soc., 1991, vol. 74, pp. 1675–81.

    Article  CAS  Google Scholar 

  39. Z. Xie, J. Yang, and Y. Huang: Mater. Lett., 1998, vol. 37, pp. 215–20.

    Article  CAS  Google Scholar 

  40. T.N. Tiegs, J.O. Kiggans, and H.D. Kimrey: in Microwave Processing of Materials-II, Materials Research Society Symposium Proceedings, W.B. Snyder, W.H. Sutton, M.F. Iskander, and D.L. Johnson, eds., Materials Research Society, Pittsburgh, PA, 1991, vol. 189, pp. 267–72.

  41. A. Upadhyaya, S.K. Tiwari, and P. Mishra: Scripta Mater., 2007, vol. 56, pp. 5–8.

    Article  CAS  Google Scholar 

  42. M.A. Janney, H.D. Kimrey, W.R. Allen and J.O. Kiggans: J. Mater. Sci., 1997, vol. 32, pp. 1347–55.

    Article  CAS  Google Scholar 

  43. K.I. Rybakov and V.E. Semenov: Phys. Rev. B, 1995, vol. 52, pp. 3030–33.

    Article  CAS  Google Scholar 

  44. S.A. Freeman, J.H. Booske, and R.F. Cooper: Phys. Rev. Lett., 1995, vol. 74, pp. 2042–45.

    Article  CAS  Google Scholar 

  45. R.M. German: Sintering Theory and Practice, John Wiley & Sons, New York, NY, 1996.

    Google Scholar 

  46. R. Boyer, G. Welsch, and E.W. Collings: Materials Properties Handbook: Titanium Alloys, ASM INTERNATIONAL, Materials Park, OH, 1994.

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Australian Research Council (ARC). One of the authors (MY) acknowledges the support of an ARC Postdoctoral Fellowship. Ms. Cheryl Berquist (The University of Queensland) is acknowledged for green sample preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Qian.

Additional information

Manuscript submitted July 22, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, S.D., Yan, M., Schaffer, G.B. et al. Sintering of Titanium in Vacuum by Microwave Radiation. Metall Mater Trans A 42, 2466–2474 (2011). https://doi.org/10.1007/s11661-011-0645-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0645-8

Keywords

Navigation