Skip to main content
Log in

Thermal Relaxation of Residual Stresses in Nickel-Based Superalloy Inertia Friction Welds

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This article describes an experimental study aimed at characterizing the extent of residual stress relaxation during thermal treatment of inertia friction-welded alloy 720Li nickel-based superalloy welded tubular rings. In the as-welded condition, yield level tensile hoop stresses were found by neutron diffraction in the weld region along with axial bending stresses (tensile toward the inner diameter (ID)/compressive toward the outer). The evolution of these residual stress levels during postweld heat treatment (PWHT) was mapped experimentally over the weld cross section. After 8 hours of PWHT, the axial stresses relaxed by 70 pct, whereas the hoop stresses reduced by only 50 pct. Some scatter of residual stress evolution was found between samples, particularly for the axial stress direction. This was attributed to substandard tooling to grip the rings. The results on subscale samples were transferred to a full-scale aeroengine (650-mm diameter) compressor drum assembly that was postweld heat treated for 8 hours. It was found that the residual stresses, particularly in the axial direction, were noticeably lower in this full-scale weld component compared to the subscale weld heat treated for the same time. The differences seem to be best rationalized by the different standards of jigging used during joining these two types of welds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Preuss and P. Threadgill: in Encyclopedia of Aerospace Engineering, R. Blockley and W. Shyy, eds., John Wiley & Sons Ltd, Chister, UK, 2010, pp. 2355–68.

  2. K.K. Wang: Weld. Res. Council Bull., 1975, vol. 204, pp. 1–22.

    Google Scholar 

  3. M.B. Henderson, D. Arrell, R. Larsson, M. Heobel, and G. Marchant: Sci. Technol. Weld. Join., 2004, vol. 9, pp. 13–21.

    Article  CAS  Google Scholar 

  4. J. Mao, K. Chang, V. Keefer, and D. Furrer: J. Mater. Eng. Perform., 2000, vol. 9, pp. 204–14.

    Article  CAS  Google Scholar 

  5. M. Preuss, J.Q. Da Fonseca, I. Kyriakoglou, P.J. Withers, and G.J. Baxter: Proc. Int. Symp. on Superalloys, 2004, pp. 477–84.

  6. M. Preuss, J.W.L. Pang, P.J. Withers, and G.J. Baxter: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 3215–25.

    Article  CAS  Google Scholar 

  7. M. Preuss, J.W.L. Pang, P.J. Withers, and G.J. Baxter: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 3227–34.

    Article  CAS  Google Scholar 

  8. M. Preuss, P.J. Withers, and G.J. Baxter: Mater. Sci. Eng. A, 2006, vol. 437, pp. 38–45.

    Article  Google Scholar 

  9. M.M. Attallah and H.G. Salem: Mater. Sci. Eng. A, 2005, vol. 391, pp. 51–59.

    Article  Google Scholar 

  10. M.P. Jackson and R.C. Reed: Mater. Sci. Eng. A, 1999, vol. 259, pp. 85–97.

    Article  Google Scholar 

  11. J.A. Dann, M.R. Daymond, L. Edwards, J.A. James, and J.R. Santisteban: Physica B: Condensed Matter, 2004, vol. 350, pp. E511–E514.

    Article  CAS  Google Scholar 

  12. J.W.L. Pang, M. Preuss, P.J. Withers, G.J. Baxter, and C. Small: Mater. Sci. Eng. A, 2003, vol. 356, pp. 405–13.

    Article  Google Scholar 

  13. H. Rietveld: J. Appl. Crystallogr.,1969, vol. 2, pp. 65–71.

    Article  CAS  Google Scholar 

  14. M.R. Daymond, M. Preuss, and B.Clausen: Acta Mater., 2007, vol. 55, pp. 3089–3102.

    Article  CAS  Google Scholar 

  15. T. Pirling, G. Bruno, and P.J. Withers: Mater. Sci. Eng. A, 2006, vol. 437, pp. 139–44.

    Article  Google Scholar 

  16. H. Stone, P. Withers, S. Roberts, R. Reed, and T. Holden: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1797–1808.

    Article  CAS  Google Scholar 

  17. P.J. Withers, M. Preuss, A. Steuwer, and J.W.L. Pang: J. Appl. Crystallogr., 2007, vol. 40, pp. 891–904.

    Article  CAS  Google Scholar 

  18. B. Grant, M. Preuss, P.J. Withers, G. Baxter, and M. Rowlson: Mater. Sci. Eng. A, 2009, vols. 513–514, pp. 366–75.

    Google Scholar 

  19. M.R. Daymond, C.N. Tomé, and M.A.M. Bourke: Acta Mater., 2000, vol. 48, pp. 553–64.

    Article  CAS  Google Scholar 

  20. T.M. Holden, R.A. Holt, and A.P. Clarke: Mater. Sci. Eng. A, 1998, vol. 246, pp. 180–98.

    Article  Google Scholar 

  21. H.J. Stone,T.M. Holden, and R.C. Reed: Scripta Mater., 1999, vol. 40, pp. 353–58.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Giovanni Bruno (SALSA, ILL, Grenoble, France) and Dr. Javier Santisteban (ENGIN-X, ISIS, Chilton, United Kingdom) for the experimental assistance. Financial support from the Rolls-Royce/DTI-DARP program and EPSRC program (Grant No. GR/GB103NJ) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Preuss.

Additional information

Manuscript submitted June 8, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karadge, M., Grant, B., Withers, P.J. et al. Thermal Relaxation of Residual Stresses in Nickel-Based Superalloy Inertia Friction Welds. Metall Mater Trans A 42, 2301–2311 (2011). https://doi.org/10.1007/s11661-011-0613-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0613-3

Keywords

Navigation