Skip to main content

Advertisement

Log in

Cold Consolidation of Ball-Milled Titanium Powders Using High-Pressure Torsion

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Pure Ti (99.5 pct) powders after processing with ball milling (BM) were consolidated to disc-shaped samples with 10-mm diameter and 0.8-mm thickness at room temperature using high-pressure torsion (HPT). A relative density as high as 99.9 pct, high bending and tensile strengths of 2.55 to 3.45 and 1.35 GPa, respectively, and a moderate ductility of 8 pct with an ultrafine grained structure are achieved after cold consolidation with HPT, which exceed those of hot consolidation methods. X-ray diffraction (XRD) analysis showed that a phase transformation occurs from α phase to ω phase during HPT under a pressure of 6 GPa as in bulk pure Ti, whereas no phase transformation is detected after processing with BM alone. It was confirmed that the strength and ductility are improved by a combined application of BM and HPT when compared with other severe plastic deformation methods applied to Ti and Ti-6 pct Al-4 pct V, so that no alloying elements are required for the achievement of a comparable strength and ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Prog. Mater. Sci., 2000, vol. 45, pp. 103–89.

    Article  CAS  Google Scholar 

  2. A.V. Korznikov, I. Safarov, D.V. Laptionok, and R.Z. Valiev: Acta Metall. Mater., 1991, vol. 39, pp. 3193–97.

    Article  CAS  Google Scholar 

  3. V.A. Zilbershtein, N.P. Chistotina, A.A. Zharov, N.S. Grishina, and E.I. Estrin: Fiz. Metal. Metalloved., 1975, vol. 39, pp. 445–47.

    CAS  Google Scholar 

  4. P.W. Bridgman: Phys. Rev., 1935, vol. 48, pp. 825–47.

    Article  CAS  ADS  Google Scholar 

  5. H. Shen, B. Guenther, A.V. Koanikov, and R.Z. Valiev: Nanostruct. Mater., 1995, vol. 6, pp. 385–88.

    Article  CAS  Google Scholar 

  6. R.Z. Valiev, R.S. Mishra, J. Groza, and A.K. Mukherjee: Scripta Mater., 1996, vol. 34, pp. 1443–48.

    Article  CAS  Google Scholar 

  7. J. Sort, A.P. Zhilyaev, M. Zielinska, J. Nogues, S. Surinach, J. Thibault, and M.D. Baro: Acta Mater., 2003, vol. 51, pp. 6385–93.

    Article  CAS  Google Scholar 

  8. Z. Lee, F. Zhou, R.Z. Valiev, E.J. Lavernia, and S.R. Nutt: Scripta Mater., 2004, vol. 51, pp. 209–14.

    Article  CAS  Google Scholar 

  9. I.V. Alexandrov, Y.T. Zhu, T.C. Lowe, R.K. Islamgaliev, and R.Z. Valiev: Nanostruct. Mater., 1998, vol. 10, pp. 45–54.

    Article  CAS  Google Scholar 

  10. I.V. Alexandrov, Y.T. Zhu, T.C. Lowe, and R.Z. Valiev: Powder Metall., 1998, vol. 41, pp. 11–13.

    CAS  Google Scholar 

  11. I.V. Alexandrov, Y.T. Zhu, T.C. Lowe, R.K. Islamgaliev, and R.Z. Valiev: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2253–60.

    Article  CAS  ADS  Google Scholar 

  12. V.V. Stolyarov, Y.T. Zhu, T.C. Lowe, R.K. Islamgaliev, and R.Z. Valiev: Mater. Sci. Eng. A, 2000, vol. 282, pp. 78–85.

    Article  Google Scholar 

  13. R. Kuzel, Z. Matej, V. Cherkaska, J. Pesicka, J. Cizek, I. Prochazka, and R.K. Islamgaliev: J. Alloys Compd., 2004, vol. 378, pp. 242–47.

    Article  CAS  Google Scholar 

  14. R.K. Islamgaliev, W. Buchgraber, Y.R. Kolobov, N.M. Amirkhanov, A.V. Sergueeva, K.V. Ivanov, and G.P. Grabovetskaya: Mater. Sci. Eng. A, 2001, vols. 319–321, pp. 872–76.

    Google Scholar 

  15. T. Tokunaga, K. Kaneko, and Z. Horita: Mater. Sci. Eng. A, 2008, vol. 490, pp. 300–04.

    Article  Google Scholar 

  16. T. Tokunaga, K. Kaneko, K. Sato, and Z. Horita: Scripta Mater., 2008, vol. 58, pp. 735–38.

    Article  CAS  Google Scholar 

  17. E. Menendez, J. Sort, V. Langlais, A. Zhilyaev, J.S. Munoz, S. Surinach, J. Nogues, and M.D. Baro: J. Alloys Compd., 2007, vols. 434–435, pp. 505–08.

    Article  Google Scholar 

  18. E. Menendez, G. Salazar-Alvarez, A.P. Zhilyaev, S. Surinach, M.D. Baro, J. Nogues, and J. Sort: Adv. Funct. Mater., 2008, vol. 18, pp. 3293–98.

    Article  CAS  Google Scholar 

  19. H. Li, A. Misra, Y. Zhu, Z. Horita, C.C. Koch, and T.G. Holesinger: Mater. Sci. Eng. A, 2009, vol. 523, pp. 60–64.

    Article  Google Scholar 

  20. H. Li, A. Misra, Z. Horita, C.C. Koch, N.A. Mara, P.O. Dickerson, and Y. Zhu: J. Appl. Phys., 2009, vol. 95, p. 071907.

    Google Scholar 

  21. A. Bachmaier, A. Hohenwartera, and R. Pippana: Scripta Mater., 2009, vol. 61, pp. 1016–19.

    Article  CAS  Google Scholar 

  22. W.J. Botta Filho, J.B. Fogagnolo, C.A.D. Rodrigues, C.S. Kiminami, C. Bolfarini, and A.R. Yavari: Mater. Sci. Eng. A, 2004, vols. 375–377, pp. 936–941.

    Google Scholar 

  23. J. Sort, D.C. Ile, A.P. Zhilyaev, A. Concustell, T. Czeppe, M. Stoica, S. Surinach, J. Eckert, and M.D. Baro: Scripta Mater., 2004, vol. 50, pp. 1221–25.

    Article  CAS  Google Scholar 

  24. A.R. Yavari, W.J. Botta Filho, C.A.D. Rodrigues, C. Cardoso, and R.Z. Valiev: Scripta Mater., 2002, vol. 46, pp. 711–16.

    Article  CAS  Google Scholar 

  25. Z. Kovacs, P. Henits, A.P. Zhilyaev, and A. Revesz: Scripta Mater., 2006, vol. 54, pp. 1733–37.

    Article  CAS  Google Scholar 

  26. N. Boucharat, R. Hebert, H. Rosner, R.Z. Valiev, and G. Wilde: J. Alloys Compd., 2007, vols. 434–435, pp. 252–54.

    Article  Google Scholar 

  27. T. Czeppe, G. Korznikova, J. Morgiel, A. Korznikov, N.Q. Chinh, P. Ochin, and A. Sypien: J. Alloys Compd., 2009, vol. 483, pp. 74–77.

    Article  CAS  Google Scholar 

  28. K. Edalati, Y. Yokoyama, and Z. Horita: Mater. Trans., 2010, vol. 51, pp. 23–26.

    Article  CAS  Google Scholar 

  29. A.P. Zhilyaev, A.A. Gimazov, G.I. Raab, and T.G. Langdon: Mater. Sci. Eng. A, 2008, vol. 486, pp. 123–28.

    Article  Google Scholar 

  30. A.P. Zhilyaev, S. Swaminathan, A.A. Gimazov, T.R. McNelley, and T.G. Langdon: J. Mater. Sci., 2008, vol. 43, pp. 7451–56.

    Article  CAS  ADS  Google Scholar 

  31. K. Edalati and Z. Horita: Scripta Mater., 2010, vol. 63, pp. 174–77.

    Article  CAS  Google Scholar 

  32. J.S. Benjamin: Sci. Am., 1976, vol. 234, pp. 40–48.

    Article  CAS  Google Scholar 

  33. C. Suryanarayana: Prog. Mater. Sci., 2001, vol. 46, pp. 1–184.

    Article  CAS  Google Scholar 

  34. ASM Handbook, vol. 7, Powder Metal Technologies and Applications, 10th ed., ASM INTERNATIONAL, Metals Park, OH, 1998.

  35. C.J. Lu, J. Zhang, and Z.Q. Li: J. Alloys Compd., 2004, vol. 381, pp. 278–83.

    Article  CAS  Google Scholar 

  36. Y.Y. Li, C. Yang, W.P. Chen, X.Q. Li, and M. Zhu: J. Mater. Res., 2007, vol. 22, pp. 1927–32.

    Article  CAS  ADS  Google Scholar 

  37. P. Chatterjee and S.P. Sen Gupta: Philos. Mag. A, 2001, vol. 81, pp. 49–60.

    Article  CAS  ADS  Google Scholar 

  38. I. Manna, P.P. Chattopadhyay, P. Nandi, F. Banhart, and H.J. Fecht: J. Appl. Phys., 2003, vol. 93, pp. 1520–24

    Article  CAS  ADS  Google Scholar 

  39. J. Dutkiewicz, J. Kusnierz, M. Maziarz, M. Lejkowska, H. Garbacz, M. Lewandowska, A. Dobromyslov, and K.J. Kurzydlowski: Phys. Status Solidi A, 2005, vol. 202, pp. 2309–20.

    Article  CAS  ADS  Google Scholar 

  40. F. Sun, A. Zuniga, P. Rojas, and E.J. Lavernia: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2069–78.

    Article  CAS  ADS  Google Scholar 

  41. H. Fujiwara, T. Sekiguchi, and K. Ameyama: Int. J. Mater. Res., 2009, vol. 100, pp. 796–99.

    CAS  Google Scholar 

  42. Y.K. Vohra, S.K. Sikka, S.N. Vaidya, and R. Chidamberan: J. Phys. Chem. Solids, 1977, vol. 38 (11), pp. 1293–96.

    Article  CAS  ADS  Google Scholar 

  43. A.R. Kilmametov, A.V. Khristoforova, G. Wilde, and R.Z. Valiev: Z. Kristallogr. Suppl., 2007, vol. 26, pp. 339–44.

    Article  Google Scholar 

  44. Y. Ivanisenko, A. Kilmametov, H. Rosner, and R.Z. Valiev: Int. J. Mater. Res., 2008, vol. 99, pp. 36–41.

    CAS  Google Scholar 

  45. Y. Todaka, J. Sasaki, T. Moto, and M. Umemoto: Scripta Mater., 2008, vol. 59, pp. 615–18.

    Article  CAS  Google Scholar 

  46. K. Edalati, E. Matsubara, and Z. Horita: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 2079–86.

    Article  CAS  ADS  Google Scholar 

  47. K. Edalati, Z. Horita, S. Yagi, and E. Matsubara: Mater. Sci. Eng. A, 2009, vol. 523, pp. 277–81.

    Article  Google Scholar 

  48. ASTM E290, Standard Test Methods for Bend Testing of Material for Ductility, ASTM International, West Conshohocken, PA, 2009.

  49. K. Edalati, Z. Horita, and T.G. Langdon: Scripta Mater., 2009, vol. 60, pp. 9–12.

    Article  CAS  Google Scholar 

  50. K. Edalati, T. Fujioka, and Z. Horita: Mater. Trans., 2009, vol. 50, pp. 44–50.

    Article  CAS  Google Scholar 

  51. K. Edalati, Z. Horita, M. Tanaka, and K. Higashida: Adv. Mater. Res., 2010, vol. 89–91, pp. 171–76.

    Article  Google Scholar 

  52. A. Vorhauer and R. Pippan: Scripta Mater., 2004, vol. 51, pp. 921–25.

    Article  CAS  Google Scholar 

  53. K. Edalati, T. Fujioka, and Z. Horita: Mater. Sci. Eng. A, 2008, vol. 497, pp. 168–73.

    Article  Google Scholar 

  54. K. Edalati, Z. Horita, and Y. Mine: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2136–41.

    Article  Google Scholar 

  55. M. Kai, Z. Horita, and T.G. Langdon: Mater. Sci. Eng. A, 2008, vol. 488, pp. 117–24.

    Article  Google Scholar 

  56. V.V. Stolyarov, Y.T. Zhu, T.C. Lowe, and R.Z. Valiev: Mater. Sci. Eng. A, 2001, vol. 303 pp. 82–89.

    Article  Google Scholar 

  57. V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, T.C. Lowe, and R.Z. Valiev: Mater. Sci. Eng. A, 2003, vol. 343, pp. 43–50.

    Article  Google Scholar 

  58. D. Terada, S. Inoue, and N. Tsuji: J. Mater. Sci., 2007, vol. 42, pp. 1673–81.

    Article  CAS  ADS  Google Scholar 

  59. Y.H. Zhao, Y.Z. Guo, Q. Wei, A.M. Dangelewicz, C. Xu, Y.T. Zhu, T.G. Langdon, Y.Z. Zhou, and E.J. Lavernia: Scripta Mater., 2008, vol. 59, pp. 627–30.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Kenji Higashida, Kyushu University, for permitting the use of the bending test facility, and Dr. Masaki Tanaka, Kyushu University, for helpful assistance in using a bending test machine. We are also grateful to Professor H. Miura, Kyushu University, for lending us a facility of the density measurement. One of the authors (KE) thanks the Islamic Development Bank for a scholarship. This work was supported, in part, by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan in the Priority Area “Giant Straining Process for Advanced Materials Containing Ultra-High Density Lattice Defects” and, in part, by Kyushu University Interdisciplinary Programs in Education and Projects in Research Development (P&P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaveh Edalati.

Additional information

Manuscript submitted December 17, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edalati, K., Horita, Z., Fujiwara, H. et al. Cold Consolidation of Ball-Milled Titanium Powders Using High-Pressure Torsion. Metall Mater Trans A 41, 3308–3317 (2010). https://doi.org/10.1007/s11661-010-0400-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0400-6

Keywords

Navigation