Skip to main content
Log in

Thermal stability and recrystallization of nanocrystalline Ti produced by cryogenic milling

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The grain growth, thermal stability, and recrystallization behavior of a cryomilled Ti alloy with a grain size of about 21.2 nm were examined using differential scanning calorimetry, X-ray diffraction, and transmission electron microscopy. Isochronal heat treatments at different temperatures were applied to study the thermal stability and recrystallization behavior of this alloy system. The average grain size increased from 20 to 80 nm in the temperature range of 200 °C to 350 °C, and then significantly decreased to 15 nm during annealing at 400 °C to 450 °C. This phenomenon was rationalized on the basis of a recrystallization mechanism. When the annealing temperature increased from 450 °C to 720 °C, the grain size increased slightly from 15.2 to 27.5 nm. In addition, the isothermal grain growth behavior in this alloy was investigated in the temperature range of 150 °C to 720 °C, and the resulting grain growth activation energy was analyzed to rationalize the underlying grain growth mechanisms. An interesting scientific question that arises from the present work is whether a decrease in grain size can be obtained in nanocrystalline (nc) materialsvia a recrystallization mechanism. The present results show that indeed a smaller grain size is obtained after annealing at elevated temperatures (500 °C to 720 °C) in cryomilled nc Ti, and the experimental results are explained on the basis of a recrystallization mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Gleiter:Acta Mater., 2000, vol. 48, pp. 1–29.

    Article  CAS  Google Scholar 

  2. K.S. Kumar, H. Van Swygenhoven, and S. Suresh:Acta Mater., 2003, vol. 51, pp. 5743–74.

    Article  CAS  Google Scholar 

  3. C.C. Koch:Nanostr. Mater, 1997, vol. 9, pp. 13–22.

    Article  CAS  Google Scholar 

  4. H.J. Fecht:Nanostr. Mater, 1995, vol. 6, pp. 33–42.

    Article  CAS  Google Scholar 

  5. R. Birringer:Mater. Sci. Eng., 1989, vol. A117, pp. 33–43.

    CAS  Google Scholar 

  6. R. Günter, A. Kumpmann, and H.D. Kunze:Scripta Metall. Mater., 1992, vol. 27, pp. 833–38.

    Article  Google Scholar 

  7. J. Weissmüller, J. Löffler, and M. Kleber:Nanostr. Mater, 1995, vol. 6, pp. 105–14.

    Article  Google Scholar 

  8. J. He and E.J. Lavernia:J. Mater. Res., 2001, vol. 16, pp. 2724–32.

    CAS  Google Scholar 

  9. F. Zhou, S.R. Nutt, C.C. Bampton, and E.J. Lavernia:Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1985–92.

    CAS  Google Scholar 

  10. Y. Xun, E.J. Lavernia, and F.A. Mohamed:Metall. Mater. Trans. A, 2004, vol. 35A, pp. 573–81.

    CAS  Google Scholar 

  11. V.L. Tellkamp, A. Melmed, and E.J. Lavernia:Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2335–43.

    Google Scholar 

  12. V.L. Tellkamp, S. Dallek, D. Cheng, and E.J. Lavernia:J. Mater. Res., 2001, vol. 16 (4), pp. 938–44.

    CAS  Google Scholar 

  13. B. Huang, R.J. Perez, and E.J. Lavernia:Mater. Sci. Eng., 1998, vol. A255, pp. 124–32.

    CAS  Google Scholar 

  14. J. Ecker, J.C. Holzer, and W.L. Johnson:J. Appl. Phys., 1993, vol. 73, pp. 131–35.

    Article  Google Scholar 

  15. R. Abe, J.C. Holzer, and W.L. Johnson:Mater. Res. Soc. Symp. Proc., 1992, vol. 238, pp. 721–27.

    CAS  Google Scholar 

  16. C.E. Krill, R. Klein, S. Janes, and R. Birringer:Mater. Sci. Forum, 1995, vols. 179–181, pp. 443–49.

    Article  Google Scholar 

  17. P. Knauth, A. Charai, and P. Gas:Scripta Metall. Mater., 1993, vol. 28, pp. 325–30.

    Article  CAS  Google Scholar 

  18. A. Kumpmann, R. Günter, and H.D. Kunze:Mater. Sci. Eng., 1993, vol. A168, pp. 165–69.

    CAS  Google Scholar 

  19. K. Boylan, D. Ostrander, U. Erb, G. Palumbo, and K.T. Aust:Scripta Metall. Mater., 1991, vol. 25, pp. 2711–16.

    Article  CAS  Google Scholar 

  20. H.J. Höfler and R.S. Averback:Scripta Metall. Mater., 1990, vol. 24, pp. 2401–06.

    Article  Google Scholar 

  21. Z. Gao and B. Fultz:Nanostr. Mater, 1994, vol. 4, pp. 939–47.

    Article  CAS  Google Scholar 

  22. C. Bansal, Z. Gao, and B. Fultz:Nanostr. Mater, 1995, vol. 5, pp. 327–36.

    Article  CAS  Google Scholar 

  23. T.R. Malow and C.C. Koch:Acta Mater., 1997, vol. 45, pp. 2177–86.

    Article  CAS  Google Scholar 

  24. K.W. Liu and F. Müchlich:Acta Mater., 2001, vol. 49, pp. 395–403.

    Article  CAS  Google Scholar 

  25. L. He and E. Ma:Manostr. Mater, 1996, vol. 7, pp. 327–39.

    Article  CAS  Google Scholar 

  26. P.A. Beck, J.C. Kremer, L.J. Demer, and M.L. Holzworth:Trans. Inst. Min. Eng., 1948, vol. 175, pp. 372–76.

    Google Scholar 

  27. J.E. Burke:Trans. Am. Inst. Min. Eng., 1949, vol. 180, pp. 73–77.

    Google Scholar 

  28. A. Michels, C.E. Krill, H. Ehrhardt, R. Birringer, and D.T. Wu:Acta Mater., 1999, vol. 47, pp. 2143–52.

    Article  CAS  Google Scholar 

  29. F. Zhou, X.Z. Liao, Y.T. Zhu, S. Dallek, and E.J. Lavernia:Acta Mater., 2003, vol. 51, pp. 2777–91.

    CAS  Google Scholar 

  30. J. Lee, F. Zhou, K.H. Chung, N.J. Kim, and E.J. Lavernia:Metall. Mater. Trans. A, 2001, vol. 32A, pp. 3109–15.

    CAS  Google Scholar 

  31. L. Lu, N.R. Tao, and L. Wang:J. Appl. Phys., 2001, vol. 89, pp. 6408–12.

    Article  CAS  Google Scholar 

  32. F.J. Humphreys and M. Hatherly:Recrystallization and Related Annealing Phenomena, Pergamon Press, Oxford, United Kingdom, 1996.

    Google Scholar 

  33. T.H. De Keijser, J.I. Langford, E.J. Mittemeijer, and A.B.P. Vogels:J. Appl. Crystallogr., 1982, vol. 15, pp. 308–12.

    Article  Google Scholar 

  34. K.H. Chung and E.J. Lavernia:Metall. Mater. Trans. A, 2002, vol. 33A, pp. 3795–801.

    CAS  Google Scholar 

  35. F. Zhou, D. Witkin, S. R. Nutt, and E.J. Lavernia:Mater. Sci. Eng., 2004, vols. A375–A377, pp. 917–21.

    Google Scholar 

  36. D. David, E.A. Garcia, and G. Beranger: inTitanium ’80 Science and Technology, H. Kimura and O. Izumi, eds., American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc., Warrendale, PA, 1980, pp. 537–43.

    Google Scholar 

  37. E.A. Brandes and G.B. Brook:Smithels Metals Reference Book, 7th ed., Butterworth-Hernemann Ltd., Oxford, United Kingdom, 1992, pp. 13-11–13-118.

    Google Scholar 

  38. D.A. Porter and K.E. Easterling:Phase Transformations in Metals and Alloys, Van Nostrand Reinhold, Workingham, United Kingdom, 1988, pp. 101–02.

    Google Scholar 

  39. H. Hu and R.S. Cline:Trans. TMS-AIME, 1968, vol. 242, pp. 1013–24.

    CAS  Google Scholar 

  40. B.B. Rath, R.J. Lederich, C.F. Yolton, and F.H. Froes:Metall. Trans. A, 1979, vol. 10A, pp. 1013–19.

    CAS  Google Scholar 

  41. P. Ganesan, K. Okazaki, and H. Conrad:Metall. Trans. A, 1979, vol. 10A, pp. 1021–29.

    CAS  Google Scholar 

  42. H. Hu and B.B. Rath:Metall. Trans. A, 1970, vol. 1A, pp. 3181–84.

    Google Scholar 

  43. C.H. Johnson, S.K. Richter, C.H. Hamilton, and J.J. Hoyt:Acta Mater., 1999, vol. 47, pp. 23–29.

    Article  CAS  Google Scholar 

  44. J.P. Hirth and J. Lothe:Theory of Dislocations, 2nd ed., Wiley, New York, NY, 1982.

    Google Scholar 

  45. J.W. Cahn and F.C. Larche:Acta Metall., 1984, vol. 32, pp. 1915–23.

    Article  CAS  Google Scholar 

  46. T.D. Shen and C.C. Koch:Nanostr. Mater, 1995, vol. 5, pp. 615–29.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, F., Zúñiga, A., Rojas, P. et al. Thermal stability and recrystallization of nanocrystalline Ti produced by cryogenic milling. Metall Mater Trans A 37, 2069–2078 (2006). https://doi.org/10.1007/BF02586127

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02586127

Keywords

Navigation