Skip to main content
Log in

Microstructural Features Leading to Enhanced Resistance to Grain Boundary Creep Cracking in ALLVAC 718Plus

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This study focuses on the microstructural features that enhance the resistance of ALLVAC 718Plus to grain boundary creep cracking during testing of samples at 704 °C in both dry and moist air. Fully recrystallized structures were found to be susceptible to brittle grain boundary cracking in both environments. Detailed transmission electron microscopy (TEM) microstructural characterization reveals features that are believed to lead to resistance to grain boundary cracking in the resistant microstructures. It is suggested that dislocation substructures found within the grains of resistant structures compete with the high-angle grain boundaries for oxygen, thereby reducing the concentration of oxygen on the grain boundaries and subsequent embrittlement. In addition, electron backscatter diffraction (EBSD) misorientation maps reveal that special boundaries (i.e., Σ3 boundaries) resist cracking. This is in agreement with previous findings on the superalloy INCONEL 718. Furthermore, it is observed that cracks propagate along high-angle boundaries. This study also shows that in this case, the presence of delta phase at the grain boundaries does not by itself produce materials that are resistant to grain boundary cracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. ALLVAC is a trademark of ATI, Charolette, NC.

  2. INCONEL is a trademark of Special Metals Corporation, Huntington, WV.

  3. WASPALOY is a trademark of United Technologies, Hartford, CT.

References

  1. Superalloys 718, 625, 706 and Various Derivatives, 2005, E.A. Loria, ed., TMS, Warrendale, PA, 2005.

  2. H.F. Merrick: Proc. Symp. Precipitation Process in Solids, TMS-AIME, Warrendale, PA, 1978, pp. 161–90.

  3. M. Sundararaman, P. Mukhopadhyay, and S. Banerjee: Metall. Trans. A, 1988, vol. 19A, pp. 453–65.

    CAS  ADS  Google Scholar 

  4. M. Sundararaman, P. Mukhopadhyay, and S. Banerjee: Metall. Trans. A, 1992, vol. 23A, pp. 2015–28.

    CAS  ADS  Google Scholar 

  5. W.D. Cao: Superalloys 718, 625, 706 and Various Derivatives, E.A. Loria, ed., TMS, Warrendale, PA., 2005, pp. 165–67.

    Google Scholar 

  6. Advanced Materials and Processes, ASM, Materials Park, OH, 2001, vol. 159, p. 96.

  7. D.A. Woodford: Energy Mater., 2006, vol. 1, pp. 59–79.

    Article  CAS  Google Scholar 

  8. P. Valerio, M. Gao, and R.P. Wei: Scripta Metall., 1995, vol. 32, pp. 1169–74.

    Article  Google Scholar 

  9. R.W. Hayes: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2596–2606.

    Article  CAS  ADS  Google Scholar 

  10. U. Krupp, W.M. Kane, C. Laird, and C.J. McMahon: Mater. Sci. Eng., A, 2004, vols. A387–389, pp. 409–13.

    Google Scholar 

  11. U. Krupp, W.M. Kane, X. Liu, O. Deuber, C. Laird, and C.J. McMahon, Jr.: Mater. Sci. Eng., A, 2003, vol. A349, pp. 213–17.

    CAS  Google Scholar 

  12. Y. Gao, M. Kumar, R.L. Nalla, and R.O. Ritchie: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 3325–33.

    Article  CAS  Google Scholar 

  13. Y. Gao, J.S. Stölken, M. Kumar, and R.O. Ritchie: Acta Mater., 2007, vol. 55, pp. 3155–67.

    Article  CAS  Google Scholar 

  14. R.W. Hayes, K. Johnson, E. Thompson, and A. Aichlmayr: Mater. Sci. Eng., A, 2009, vols. 510–511, pp. 256–61.

    Google Scholar 

  15. R.W. Hayes, D.F. Smith, E.A. Wanner, and J.C. Earthman: Mater. Sci. Eng., A, 1994, vol. 177, pp. 43–53.

    Article  CAS  Google Scholar 

  16. W.D. Cao and R.L. Kennedy: “Recommendations for Heat Treating Allvac 718 Plus Alloy Parts” Report, ATI Allvac, 2006, pp. 1–17, www.alvac.com.

  17. JCPDS File# 65-2589, calculated from PIZ#0 (ICSD@07/16/02) by Jade 6.x.

  18. R. Cozar and A. Pineau: Metall. Trans., 1973, vol. 4, pp. 47–59.

    Article  CAS  Google Scholar 

  19. D.F. Paulonis, J.M. Oblak, and D.S. Duvall: ASM Trans. Q., 1969, vol. 62, pp. 611–22.

    CAS  Google Scholar 

  20. D.F. Smith, E.F. Clatworthy, D.G. Tipton, and W.L. Mankins: in Superalloys, J.K. Tien, S.T. Wlodek, H. Morrow III, M. Gell, and G.E. Maurer, eds., ASM INTERNATIONAL, Metals Park, OH, 1980, pp. 521–30.

    Google Scholar 

  21. A. Kimura and H.K. Birnbaum: Acta Metall., 1988, vol. 36, pp. 757–66.

    Article  CAS  Google Scholar 

  22. D.R. Muzyka and G.N. Maniar: Met. Eng. Q. ASM, 1969, vol. 11, pp. 23–37.

    Google Scholar 

  23. K.A. Unocic: Doctoral Thesis, The Ohio State University, Columbus, OH, 2008.

  24. V. Gupta, R. Hernandez, and P. Charconnet: Mater. Sci. Eng., A, 2001, vol. 317, pp. 249–56.

    Article  Google Scholar 

  25. B.A. Pint, J.A. Haynes, Y. Zhang, K. More, and I. Wright: Surf. Coat. Technol., 2006, vol. 201, pp. 3852–56.

    Article  CAS  Google Scholar 

  26. J. Smialek: JOM, 2006, vol. 58, pp. 29–35.

    Article  CAS  ADS  Google Scholar 

  27. J. Smialek and G. Morscher: Mater. Sci. Eng., A, 2002, vol. 332, pp. 11–24.

    Article  Google Scholar 

  28. J. Smialek, D. Zhu, and M. Cuy: Scripta Mater., 2008, vol. 59, pp. 67–70.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenn S. Daehn.

Additional information

Manuscript submitted April 7, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Unocic, K.A., Hayes, R.W., Mills, M.J. et al. Microstructural Features Leading to Enhanced Resistance to Grain Boundary Creep Cracking in ALLVAC 718Plus. Metall Mater Trans A 41, 409–420 (2010). https://doi.org/10.1007/s11661-009-0099-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-0099-4

Keywords

Navigation