Skip to main content
Log in

Influence of Ti and C on the Solidification Microstructure of Fe-10Al-5Cr Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The influence of Ti and C on the solidification microstructure of Fe-10Al-5Cr (all composition values in weight percent) alloys was examined with solidification modeling and a variety of experimental techniques. Several Fe-10Al-5Cr-Ti-C alloys were fabricated using the arc button melting process and characterized using quantitative image analysis and electron microscopy techniques. The experimental alloys exhibited primary ferrite dendrites with an interdendritic ferrite/TiC eutectic constituent, and the amount of eutectic was affected by the Ti and C concentrations. A liquidus projection and primary solidification paths were calculated for the Fe-10Al-5Cr-Ti-C system in order to estimate the amount of TiC that is expected to form during solidification. The range in the calculated amount of TiC-containing eutectic matched the experimentally measured values reasonably well. The ability to control the amount of TiC that forms during solidification of an Fe-10Al-5Cr-Ti-C-based alloy shows promise for developing corrosion-resistant weld overlay claddings with resistance to hydrogen cracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.R. Regina, J.N. DuPont, and A.R. Marder: Corrosion, 2004, vol. 60 (5), pp. 501–09.

    Article  CAS  Google Scholar 

  2. K.W. Andrews: J. Iron Steel Inst., 1956, vol. 184, pp. 414–27.

    Google Scholar 

  3. J.R. Regina, J.N. DuPont, and A.R. Marder: Weld. J., 2007, vol. 86 (6), pp. 170–78.

    Google Scholar 

  4. H.J. Westwood and W.K. Lee: J. Mater. Eng., 1987, vol. 9, pp. 163–73.

    Article  CAS  Google Scholar 

  5. P.J. Maziasz, G.M. Goodwin, C.T. Liu, and S.A. David: Scripta Metall. Mater., 1992, vol. 27, pp. 1835–40.

    Article  CAS  Google Scholar 

  6. I. Maroef, D.L. Olson, M. Eberhart, and G.R. Edwards: Int. Mater. Rev., 2002, vol. 47 (4), pp. 191–223.

    Article  CAS  Google Scholar 

  7. G.M. Pressouyre and I.M. Bernstein: Metall. Trans. A, 1978, vol. 9A, pp. 1571–80.

    CAS  ADS  Google Scholar 

  8. R. Valentini, A. Solina, S. Matera, and P. De Gregorio: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3773–80.

    Article  CAS  ADS  Google Scholar 

  9. G.M. Pressouyre and I.M. Bernstein: Metall. Trans. A, 1978, vol. 9A, pp. 1571–80.

    CAS  ADS  Google Scholar 

  10. K.Y. Lee, J.Y. Lee, and D.R. Kim: Mater. Sci. Eng.,1984, vol. 67 (2), pp. 213–20.

    Article  CAS  Google Scholar 

  11. J.O. Andersson, T. Helander, L. Hoglund, P. Shi, and B. Sundman: CALPHAD, 2002, vol. 26 (2), pp. 273–312.

    Article  CAS  Google Scholar 

  12. J.R. Regina, J.N. DuPont, and A.R. Marder: Mater. Sci. Eng. A, 2005, vol. 404 (1–2), pp. 71–78.

    Google Scholar 

  13. T.D. Anderson, M.J. Perricone, J.N. DuPont, and A.R. Marder: Weld. J., 2007, vol. 86 (9), pp. 281s–292s.

    Google Scholar 

  14. B. Dutta, O. Pompe, and M. Rettenmayr: Mater. Sci. Technol., 2004, vol. 20, pp. 1011–18.

    Article  CAS  Google Scholar 

  15. Thermo-Calc, TCFE5 Iron and Steel Database, Thermo-Calc, Inc., Stockholm, Sweden.

  16. T.W. Clyne and W. Kurz: Metall. Trans. A, 1981, vol. 12A, pp. 965–71.

    ADS  Google Scholar 

  17. J.N. DuPont, C.V. Robino, A.R. Marder, and M.R. Notis: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2797–2806.

    Article  CAS  Google Scholar 

  18. J.N. DuPont: Diffus. Adv. Mater. Process., 2007, vol. 266, pp. 157–69.

    CAS  Google Scholar 

  19. S. Kobayashi: Trans. ISIJ, 1988, vol. 28, pp. 728–35.

    CAS  Google Scholar 

  20. H.D. Brody and M.C. Flemings: Trans. TMS-AIME, 1966, vol. 236 (5), pp. 615–24.

    CAS  Google Scholar 

  21. P. Klugkist and C. Herzig: Phys. Status Solidi A, 1995, vol. 148, pp. 413–21.

    Article  CAS  ADS  Google Scholar 

  22. E. Scheil: Z. Metallkd., 1943, vol. 34, pp. 70–72.

    CAS  Google Scholar 

  23. J.N. DuPont: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1937–47.

    Article  CAS  MathSciNet  Google Scholar 

  24. M.J. Perricone and J.N. DuPont: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1267–80.

    Article  CAS  ADS  Google Scholar 

  25. J.N. DuPont, C.V. Robino, and A.R. Marder: Acta Mater., 1998, vol. 46, pp. 4781–90.

    Article  CAS  Google Scholar 

  26. Smithells Metals Reference Book, E.A. Brandes and G.B. Brook, eds., Elsevier Butterworth-Heinemann, Burlington, MA and Oxford, England, UK, 1992, ch. 13, pp. 13-1–13-120.

  27. W. Kurz and D.J. Fisher: Fundamentals of Solidification, Trans Tech Publications, Brookfield, VT, 1989, pp. 133–51.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support for this research from the Department of Energy Fossil Energy Materials Program under Subcontract 4000039738.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. N. DuPont.

Additional information

Manuscript submitted June 16, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, K.D., DuPont, J.N. Influence of Ti and C on the Solidification Microstructure of Fe-10Al-5Cr Alloys. Metall Mater Trans A 41, 194–201 (2010). https://doi.org/10.1007/s11661-009-0073-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-0073-1

Keywords

Navigation