Skip to main content

Advertisement

Log in

Influence of Grain Boundary Character on Creep Void Formation in Alloy 617

  • Symposium: Materials for the Nuclear Renaissance
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Alloy 617, a high-temperature creep-resistant, nickel-based alloy, is being considered for the primary heat exchanger for the Next Generation Nuclear Plant (NGNP), which will operate at temperatures exceeding 760 °C and a helium pressure of approximately 7 MPa. Observations of the crept microstructure using optical microscopy indicate creep stress does not significantly influence the creep void fraction at a given creep strain over the relatively narrow set of creep conditions studied. Void formation was found to occur only after significant creep in the tertiary regime (>5 pct total creep strain) had occurred. Also, orientation imaging microscopy (OIM) was used to characterize the grain boundaries in the vicinity of creep voids that develop during high-temperature creep tests (900 °C to 1000 °C at creep stresses ranging from 20 to 40 MPa) terminated at creep strains ranging from 5 to 40 pct. Preliminary analysis of the OIM data indicates voids tend to form on grain boundaries parallel, perpendicular, or 45 deg to the tensile axis, while few voids are found at intermediate inclinations to the tensile axis. Random grain boundaries intersect most voids, while coincident site lattice (CSL)–related grain boundaries did not appear to be consistently associated with void development. Similar results were found in oxygen-free, high-conductivity (OFHC) copper, severely deformed using equal channel angular extrusion, and creep tested at 450 °C and 14 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. INCONEL is a trademark of Special Metals Corporation, Huntington, WV.

  2. PHILIPS is a trademark of Philips Electronic Instruments, Mahwah, NJ.

References

  1. Q. Wu, H. Song, R. Swindeman, J. Shingledecker, and V. Vasudevan: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2569–85.

    Article  CAS  ADS  Google Scholar 

  2. S. Kihara, A. Ohtomo, and Y. Saiga: Metall. Mater. Trans. A, 1980, vol. 11A, pp. 1019–31.

    CAS  ADS  Google Scholar 

  3. Q. Wu, H. Song, R.W. Swindeman, J.P. Shingledecker, and V.K. Vasudevan: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2569–85.

    Article  CAS  ADS  Google Scholar 

  4. K.M. Ralls, T.H. Courtney, and J. Wulff: Introduction to Materials Science and Engineering, John Wiley and Sons, New York, NY, 1976, p. 489.

    Google Scholar 

  5. S. Yang, U. Krupp, H. Christ, and V.B. Trindade: Adv. Eng. Mater., 2005, vol. 7, pp. 723–26.

    Article  CAS  Google Scholar 

  6. S. Schlegel, S. Hopkins, E. Young, J. Cole, T. Lillo, and M. Frary: Metall. Mater. Trans. A, 2009, vol. 40A, DOI: 10.1007/s11661-009-0027-7.

  7. E. Gariboldi, M. Cabibbo, S. Spigarelli, and D. Ripamonti: Int. J. Pressure Vessels Piping, 2008, vol. 85, pp. 63–71.

    Article  CAS  Google Scholar 

  8. R.H. Cook: Nucl. Technol., 1984, vol. 66, pp. 283–88.

    CAS  Google Scholar 

  9. R. Swindeman and M.J. Swindeman: Int. J. Pressure Vessels Piping, 2008, vol. 85, pp. 72–79.

    Article  CAS  Google Scholar 

  10. V. Randle: Acta Mater., 1997, vol. 46, pp. 1459–80.

    Article  Google Scholar 

  11. E.M. Lehockey and G. Palumbo: Mater. Sci. Eng., 1997, vol. A237, pp. 168–72.

    CAS  Google Scholar 

  12. V. Thaveeprungsriporn and G. Was: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 2101–12.

    Article  CAS  Google Scholar 

  13. T. Watanabe: Res. Mechanica, 1984, vol. 11, pp. 47–84.

    CAS  Google Scholar 

  14. H. Kokawa, T. Watanabe, and S. Karashima: Phil. Mag. A, 1981, vol. 44, pp. 1239–54.

    Article  CAS  ADS  Google Scholar 

  15. H.U. Hong, B.S. Rho, and S.W. Nam: Mater. Sci. Eng., vol. A318, 2001, pp. 285–92.

  16. B. Alexandreanu, B. Sencer, V. Thaveeprungsriporn, and G. Was: Acta Mater., 2003, vol. 51, pp. 3831–48.

    Article  CAS  Google Scholar 

  17. V. Segal: Mater. Sci Eng. A, vol. 197, pp. 157–64.

  18. B. Wilshire and C.J. Palmer: Scripta Mater., 2002, vol. 46, pp. 483–88.

    Article  CAS  Google Scholar 

  19. K.R. McNee, G.W. Greenwood, and H. Jones: Scripta Mater., 2000, vol. 44, pp. 351–57.

    Google Scholar 

  20. J.P. Hirth and J. Lothe: Theory of Dislocations, 2nd ed., John Wiley and Sons, New York, NY, 1982, p. 839.

    Google Scholar 

  21. F. Diologent and P. Caron: Mater. Sci. Eng. A, 2004, vol. 385, pp. 245–57.

    Google Scholar 

  22. F. Pettinari, J. Douin, G. Saada, P. Caron, A. Coujou, and N. Clement: Mater. Sci. Eng. A, 2002, vol. 325, pp. 511–19.

    Article  Google Scholar 

  23. M.F. Ashby: Acta Metall., 1972, vol. 20, pp. 887–97.

    Article  CAS  Google Scholar 

  24. G.E. Dieter: Mechanical Metallurgy, 3rd ed., McGraw-Hill Book Company, New York, NY, 1986, pp. 449–51.

    Google Scholar 

  25. H.E. Evans: Mechanisms of Creep Fracture, Elsevier Applied Science Publishers, New York, NY, 1984, pp. 25–62.

    Google Scholar 

  26. R.H. Priest and E.G. Ellsion: Mater. Sci. Eng., 1981, vol. 49, pp. 7–17.

    Article  CAS  Google Scholar 

  27. ASME Boiler and Pressure Vessel Code, Section III—Rules for Construction of Nuclear Facility Components, Division 1, Subsection NH—Class 1 Components in Elevated Temperature Service, The American Society of Mechanical Engineers, New York, NY.

  28. V. Randle: The Measurement of Grain Boundary Geometry, Institute of Physics Publishing, Philadelphia, PA, 1993, pp. 2–5.

    Google Scholar 

  29. R.E. Reed-Hill: Physical Metallurgy Principles, 2nd ed., PWS Publishers, Boston, MA, 1973, pp. 390–97.

    Google Scholar 

  30. V. Randle: Scripta Mater., 2006, vol. 54, pp. 1011–15.

    Article  CAS  Google Scholar 

  31. C. Kim, A.D. Rollet, and G.S. Rohrer: Scripta Mater., 2006, vol. 54, pp. 1005–09.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the United States Department of Energy, Office of Nuclear Energy, under the DOE Idaho Operations Office, Contract No. DE-AC07-05ID14517.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Lillo.

Additional information

This article is based on a presentation given in the symposium “Materials for the Nuclear Renaissance,” which occurred during the TMS Annual Meeting, February 15–19, 2009, in San Francisco, CA, under the auspices of Corrosion and Environmental Effects and the Nuclear Materials Committees of ASM-TMS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lillo, T., Cole, J., Frary, M. et al. Influence of Grain Boundary Character on Creep Void Formation in Alloy 617. Metall Mater Trans A 40, 2803–2811 (2009). https://doi.org/10.1007/s11661-009-0051-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-0051-7

Keywords

Navigation