Skip to main content

Advertisement

Log in

The role of coincidence-site-lattice boundaries in creep of Ni-16Cr-9Fe at 360 °C

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The objective of this study is to understand and quantify the role of the coincidence-site-lattice boundary (CSLB) population on creep deformation of Ni-16Cr-9Fe at 360 °C. It is hypothesized that an increase in the CSLB population decreases the annihilation rate of dislocations in the grain boundary, leading to an increase in the internal stress and a decrease in the effective stress. The result is a reduction in the creep strain rate. The role of CSLBs in deformation is, thus, to increase the internal stress by trapping run-in lattice dislocations at the grain boundaries as extrinsic grain boundary dislocations (EGBDs), creating backstresses on following dislocations rather than annihilating them, as in the case of high-angle boundaries (HABs). The hypothesis was substantiated by showing (1) that dislocation absorption kinetics differ substantially between a CSLB and an HAB, and (2) that the CSLB fraction strongly affects the internal stress in the solid. Dislocation absorption kinetics were measured by comparing EGBD density in transmission electron microscopy (TEM). Results showed that CSLBs contain an EGBD density which is 3 times higher than HABs at 1.25 pct strain. Internal stress was measured by the stress dip test and was found to be ≈ 30 MPa higher in the CSLB-enhanced sample. Steady-state creep rates of Ni-16Cr-9Fe in 360 °C argon were also found to be strongly affected by the grain boundary character distribution. Increasing the CSLB fraction by approximately a factor of 2 resulted in a decrease in steady-state creep rates by a factor of 8 to 26 in coarse-grain (330 µm) samples and a factor of 40 to 66 in small-grain (35 µm) samples. It is postulated that annihilation of EGBDs only occurs at triple lines where at least two HABs intersect. By using a geometric relationship to evaluate the probability of EGBDs annihilating at a triple line, the model predicts a non-linear dependence of the creep rate with CSLB fraction, yielding excellent correlation with measurement. The model provides a physical basis for measurements which show that increasing the CSLB fraction by only moderate amounts can greatly reduce the steady-state creep rate in Ni-16Cr-9Fe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Norring and J. Engstrom: 1985 Workshop on Primary-Side Stress Corrosion Cracking of PWR Steam Generator Tubing, A.R. McIlree, ed., EPRI, Palo Alto, CA, Report No. NP-5158, 1987, paper no. 3.

    Google Scholar 

  2. A.K. Agrawal and G. Frieling: 1987 Workshop on Secondary-Side Intergranular Corrosion Mechanisms, EPRI, Palo Alto, CA, Report No. NP-4458, Mar. 1988.

    Google Scholar 

  3. G.P. Airey: 3rd Int. Symp. on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, NACE, Houston, TX, 1984, pp. 462–78.

    Google Scholar 

  4. A.P. Sutton: Int. Met. Rev., 1984, vol. 29, pp. 377–402.

    CAS  Google Scholar 

  5. L.S. Shvindlerman and B.B. Straumal: Acta Metall., 1985, vol. 33, pp. 1735–49.

    Article  CAS  Google Scholar 

  6. G. Palumbo, P.J. King, P.C. Lichtenberger, K.T. Aust, and U. Erb: Mater. Res. Soc. Symp. Proc., 1992, vol. 238, pp. 311–316.

    CAS  Google Scholar 

  7. K.T. Aust, U. Erb, and G. Palumbo: Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructure, NATO ASI Series, Kluwer, Hingham, MA, 1993, p. 107.

    Google Scholar 

  8. P.J. Goodhew: Met. Sci. J., 1979, vol. 13, pp. 108–17.

    CAS  Google Scholar 

  9. D. Bouchet and L. Priester: Scripta Metall., 1987, vol. 21, pp. 475–78.

    Article  CAS  Google Scholar 

  10. L. Priester: Rev. Phys. Appl., 1989, vol. 21, pp. 419–38.

    Google Scholar 

  11. H. Kokawa, T. Watanabe, and S. Karashima: Phil. Mag. A, 1981, vol. 40, pp. 1239–54.

    Google Scholar 

  12. Don and S. Majumdar: Acta Metall., 1986, vol. 34, pp. 961–67.

    Article  CAS  Google Scholar 

  13. T. Watanabe: J. Phys., 1988, vol. 5, pp. 507–19.

    Google Scholar 

  14. D.C. Crawford and G.S. Was: Metall. Trans. A, 1992, vol. 23A, pp. 1195–1206.

    CAS  Google Scholar 

  15. K.T. Aust, U. Erb, and G. Palumbo: Mater. Sci. Eng., 1994, vol. A176, pp. 329–34.

    Google Scholar 

  16. G.S. Was, J.K. Sung, and T.M. Angeliu: Metall. Trans., 1992, vol. 23A, pp. 3343–59.

    CAS  Google Scholar 

  17. G.S. Was, T.M. Angeliu, and J.K. Sung: Paper presented at the Alloy 600 Experts Meeting, Warrenton, VA, sponsored by the Electric Power Research Institute, Palo Alto, CA, Apr. 6–9, 1993.

  18. T.M. Angeliu: Ph.D. Thesis, The University of Michigan, Ann Arbor, MI, 1993.

    Google Scholar 

  19. T. Watanabe, S.I. Kimura, and S. Karashima: Phil. Mag., 1984, vol. 49A, pp. 845–64.

    Google Scholar 

  20. K.J. Kurzydlowski, R.A. Varin, and W. Zielinski: Acta Metall., 1984, vol. 32, pp. 71–78.

    Article  CAS  Google Scholar 

  21. A.H. King: Scripta Metall., 1985, vol. 19, pp. 1517–21.

    Article  Google Scholar 

  22. L.C. Lim and R. Raj: Acta Metall., 1985, vol. 33, pp. 1577–83.

    Article  CAS  Google Scholar 

  23. D.C. Crawford and G.S. Was: J. Electron Micro. Techn., 1991, vol. 19, pp. 345–60.

    Article  CAS  Google Scholar 

  24. V. Thaveeprungsriporn, J.F. Mansfield, and G.S. Was: J. Mater. Res., 1994, vol. 9 (7), pp. 1887–94.

    CAS  Google Scholar 

  25. D.G. Brandon: Acta Metall., 1966, vol. 14, pp. 1479–84.

    Article  CAS  Google Scholar 

  26. V. Thaveeprungsriporn: Ph.D. Thesis, The University of Michigan, Ann Arbor, MI, 1996.

    Google Scholar 

  27. P. Hirsch, A. Howie, R.B. Nicholson, D.W. Pashley, and M.J. Whelan: Electron Microscopy of Thin Crystals, R.E. Krieger Publishing Co., Malabar, FL, 1977, p. 416.

    Google Scholar 

  28. V. Randle: Microtexture Determination and Its Applications, The Institute of Materials, London, 1992.

    Google Scholar 

  29. V. Randle: The Measurement of Grain Boundary Geometry, Institute of Physics Publishing, Bristol, 1993.

    Google Scholar 

  30. J. Cadek: Mater. Sci. Eng., 1987 vol. 94, pp. 79–92.

    Article  CAS  Google Scholar 

  31. H. Kokawa, T. Watanabe, and S. Karashima: Phil. Mag. A, 1981, vol. 44 (6), pp. 1239–54.

    CAS  Google Scholar 

  32. H. Kokawa, T. Watanabe, and S. Karashima: J. Mater. Sci., 1983, vol. 18, pp. 1183–94.

    Article  CAS  Google Scholar 

  33. T. Johannesson and A. Thölén: Met. Sci. J., 1972, vol. 6, pp. 189–94.

    Article  CAS  Google Scholar 

  34. P.R. Howell, J.O. Nilsson, and G.L. Dunlop: Phil. Mag. A, 1978, vol. 38 (1), pp. 39–47.

    CAS  Google Scholar 

  35. W.A.T. Clark and D.A. Smith: J. Mater. Sci., 1979, vol. 14, pp. 776–88.

    Article  CAS  Google Scholar 

  36. R.C. Pond and D.A. Smith: Phil. Mag. A, 1977, vol. 36, pp. 353–66.

    CAS  Google Scholar 

  37. P.H. Pumphrey: Scripta Metall., 1975, vol. 9, pp. 151–77.

    Article  CAS  Google Scholar 

  38. D.J. Dingley and R.C. Pond: Acta Metall., 1979, vol. 27, pp. 667–82.

    Article  CAS  Google Scholar 

  39. W. Lojkowski: Acta Metall. Mater., 1991, vol. 39 (8), pp. 1891–99.

    Article  CAS  Google Scholar 

  40. W. Blum: Phys. Status. Solid B, 1971, vol. 45, pp. 561–71.

    CAS  Google Scholar 

  41. J.W. Wyrzykowski and M.W. Grabski: Phil. Mag. A, 1986, vol. 53 (4), pp. 505–20.

    Article  CAS  Google Scholar 

  42. J. Cadek: in Creep in Metallic Materials, Elsevier Science, New York, NY, 1988.

    Google Scholar 

  43. H. Mecking and K. Lucke: Scripta Metall., 1970, vol. 4, pp. 427–32.

    Article  Google Scholar 

  44. R.A. Varin and K. Tangri: Scripta Metall., 1980, vol. 14, pp. 337–40.

    Article  CAS  Google Scholar 

  45. N.L. Peterson: in Grain Boundary Structure and Kinetics, R.W. Balluffi, ed., ASM, Metals Park, OH, 1980, pp. 209–38.

    Google Scholar 

  46. S. Sangal and K. Tangri: Metall. Trans. A, 1989, vol. 20A, pp. 479–84.

    CAS  Google Scholar 

  47. H.J. Frost and M.F. Ashby: in Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, Pergamon Press, Oxford, United Kingdom, 1982.

    Google Scholar 

  48. A.K. Mukherjee, J.E. Bird, and J.E. Dorn: ASM Trans. Q., 1969, vol. 62, p. 155.

    CAS  Google Scholar 

  49. T.H. Alden: Acta Metall., 1969, vol. 17, p. 1435.

    Article  CAS  Google Scholar 

  50. M.W. Grabski: J. Phys., 1988, vol. C5, pp. 497–506.

    Google Scholar 

  51. W.A. Swiatnicki and M.W. Grabski: Acta Metall., 1986, vol. 34, p. 817.

    Article  CAS  Google Scholar 

  52. J.L. Hertzberg and G.S. Was: Scripta Metall. Mater., 1995, vol. 33, pp. 1193–99.

    Article  CAS  Google Scholar 

  53. F.N. Rhines, K.R. Craig, and R.T. DeHoff: Metall. Trans., 1974, vol. 5, pp. 413–25.

    CAS  Google Scholar 

  54. L.E. Murr and S.H. Wang: Res Mech., 1982, vol. 4, pp. 237–74.

    CAS  Google Scholar 

  55. V. Thaveeprungsriporn, T.M. Angeliu, D.J. Paraventi, J.L. Hertzberg, and G.S. Was: 6th Int. Symp. on Environmental Degredation of Materials in Nuclear Power Systems-Water Reactors, San Diego, CA, Aug. 1993, TMS, Warrendale, PA, 1993, pp. 721–27.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thaveeprungsriporn, V., Was, G.S. The role of coincidence-site-lattice boundaries in creep of Ni-16Cr-9Fe at 360 °C. Metall Mater Trans A 28, 2101–2112 (1997). https://doi.org/10.1007/s11661-997-0167-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-997-0167-6

Keywords

Navigation