Skip to main content
Log in

Continuous Grain Size Gradients in Austenitic Incoloy 800H: Design, Processing, and Characterization

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Grain size variations are common in thermomechanically processed alloys with non-uniform cold work. A method to produce samples with grain size gradients was developed using Incoloy 800H. Two tensile samples with non-uniform gages were designed with finite element analysis and manufactured. Measured strain profiles were consistent with designs, and maximum von Mises strains of \(({18.6 \pm 6.1})\) and \(({13.6 \pm 4.6})\) pct were obtained. After annealing, an area \({40 \, {\hbox {mm}} \times 5}\, {\hbox {mm}}\) was mapped by electron backscatter diffraction. Totals of 2849 and 2569 grains were identified after merging twins. Both samples had duplex grain structures as defined in ASTM E1181. Grains were binned into 4 mm strips to evaluate the spatial grain size distribution. Grain size gradients of 0.0081 and 0.0112 \({\hbox {mm}^2/\hbox {mm}}\) were obtained. Simulated grain growth of the linear gradient microstructure was consistent with accelerated growth predictions. This new method of making samples will enable laboratory studies of gradient grain size effects in realistic industrial alloy microstructures. Further, samples could be used for parallel, single specimen experiments on phenomena that depend on grain size such as complexion transitions and fatigue. Most importantly, high-throughput parallel testing of microstructures enabled by our method could accelerate materials discovery and qualification in fields such as high-entropy and nuclear alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. W. D. Callister Jr., D. G. Rethwisch: Materials Science and Engineering: An Introduction, , Hoboken, NJ, 2014.

    Google Scholar 

  2. V. Cannillo, L. Lusvarghi, T. Manfredini, M. Montorsi, C. Siligardi, A. Sola: J. Eur. Ceram. Soc. 2007, vol. 27 (2), pp. 1293–1298.

    Article  CAS  Google Scholar 

  3. A. Mortensen, S. Suresh: Int. Mater. Rev. 1995, vol. 40 (6), pp. 239–265.

    Article  CAS  Google Scholar 

  4. S. Suresh, A. Mortensen: Int. Mater. Rev. 1997, vol. 42 (3), pp. 85–116.

    Article  CAS  Google Scholar 

  5. A. R. Damodaran, S. Pandya, Y. Qi, S.-L. Hsu, S. Liu, C. Nelson, A. Dasgupta, P. Ercius, C. Ophus, L. R. Dedon, J. C. Agar, H. Lu, J. Zhang, A. M. Minor, A. M. Rappe, L. W. Martin: Nature Communications May 2017, vol. 8, pp. 14961.

    Article  Google Scholar 

  6. J. V. Mantese, A. L. Micheli, N. W. Schubring, R. W. Hayes, G. Srinivasan, S. P. Alpay: Appl. Phys. Lett. Aug. 2005, vol. 87 (8), pp. 082503.

    Article  Google Scholar 

  7. J. Dossett: in Steel Heat Treating Fundamentals and Processes. ASM Handbook, vol. 4A. ASM International, Materials Park, OH, 2014

  8. J. K. Lee, F. R. Ehrlich, L. A. Crall, T. H. Collins: Metall. Trans. A 1988, vol. 19A (2), pp. 329–335.

    Article  CAS  Google Scholar 

  9. K.-H. Hwang, M. R. Plichta, J. K. Lee: Mater. Sci. Eng. A May 1988, vol. 101, pp. 183–192.

    CAS  Google Scholar 

  10. K.-H. Hwang, M. R. Plichta, J. K. Lee: Mater. Sci. Eng. A 1989, vol. 114, pp. 61–71.

    Article  Google Scholar 

  11. J. Yan, J. Ma, J. Wang, Y. Shen: Metall. Mater. Trans. A 2018, vol. 49A (11), pp. 5333–5338.

    Article  Google Scholar 

  12. J. Long, Q. Pan, N. Tao, M. Dao, S. Suresh, and L. Lu: Acta Mater. 2018

  13. Z. Cheng, H. Zhou, Q. Lu, H. Gao, L. Lu: Science Nov. 2018, vol. 362 (6414), pp. eaau1925.

    Article  Google Scholar 

  14. P. Kodali, J.P. Richert: Failure mechanisms of alloy 800H in steam reformer furnace pigtails. in: CORROSION 2003: NACE International, 2003

  15. ASME: Boiler and Pressure Vessel Code. Tech. Rep. Section VIII Division I. American Society of Mechanical Engineers, New York, NY, 2007

  16. H. Almostaneer, H. Schrijen, K. Barai, A. Al-Meshari: Adv. Mater. Process. Technol. 2015, vol. 1 (1-2), pp. 56–66.

    Google Scholar 

  17. A. Baskaran, D. Crist, D. Lewis: Modell. Simul. Mater. Sci. Eng. Sep. 2017, vol. 25 (6), pp. 065010.

    Article  Google Scholar 

  18. K. Brakke: Surface Evolver Manual. Susquehanna University, Selinsgrove, 2013

    Google Scholar 

  19. E04 Committee: ASTM E112-13: Test Methods for Determining Average Grain Size: Tech. Rep. ASTM International, West Conshohocken, PA, 2013

  20. E04 Committee: ASTM E1382 - 97(2015): Test Methods for Determining Average Grain Size Using Semiautomatic and Automatic Image Analysis: Tech. Rep. ASTM International, West Conshohocken, PA, 2015

  21. E04 Committee: ASTM E2627 - 13: Practice for Determining Average Grain Size Using Electron Backscatter Diffraction (EBSD) in Fully Recrystallized Polycrystalline Materials: Tech. Rep. ASTM International, West Conshohocken, PA 2013

  22. E. Committee: ASTM E930 - Standard Test Methods for Estimating the Largest Grain Observed in a Metallographic Section (ALA Grain Size) - Engineering Workbench: Tech. Rep. ASTM International, West Conshohocken, PA 2018

  23. E. Committee: ASTM E1181 - Standard Test Methods for Characterizing Duplex Grain Sizes - Engineering Workbench: Tech. Rep. ASTM International, West Conshohocken, PA, 2015

  24. Incoloy alloy 800H & 800HT: Tech. Rep. SMC-047. Special Metals Corporation, New Hartford, NY 2004

  25. W. Ren and R. Swindeman: A Review of Alloy 800H for Applications in the Gen IV Nuclear Energy Systems. in: ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference. American Society of Mechanical Engineers, 2010, pp. 821–36.

  26. S. Watanabe, T. Shibasaki, and T. Hokamura: Remaining Life Estimation of Alloy 800H Pigtail Material During High Temperature Service. in: CORROSION 2018. NACE International, 2018

  27. D. Drabble, C. Bishop, M. Kral: Metall. Mater. Trans. A 2011, vol. 42A (3), pp. 763–772.

    Article  Google Scholar 

  28. L. Tan, L. Rakotojaona, T. R. Allen, R. K. Nanstad, J. T. Busby: Mater. Sci. Eng. A 2011, vol. 528 (6), pp. 2755–2761.

    Article  Google Scholar 

  29. E. Brünger, X. Wang, G. Gottstein: Scripta Mater. May 1998, vol. 38 (12), pp. 1843–1849.

    Article  Google Scholar 

  30. Y. Cao, H. Di, J. Zhang, J. Zhang, T. Ma, R. D. K. Misra: Materials Science and Engineering: A 2013, vol. 585, pp. 71–85.

    Article  CAS  Google Scholar 

  31. Y. Cao, H. Di, G. Huang: Journal of Nuclear Materials 2017, vol. 486, pp. 21–25.

    Article  CAS  Google Scholar 

  32. W. S. Chen, W. Kai, L. W. Tsay, J. J. Kai: Nucl. Eng. Des. 2014, vol. 272, pp. 92–98.

    Article  CAS  Google Scholar 

  33. A. L. Beardsley, C. M. Bishop, M. V. Kral: Metall. Mater. Trans. A 2019, vol. 50A (9), pp. 4098–4110.

    Article  Google Scholar 

  34. A. Beardsley, C. Bishop, M. Kral: Mater. Perform. Charact. 2016, vol. 5 (5), pp. 717–739.

    CAS  Google Scholar 

  35. Y. Cao, X. Shen, H. Di, G. Huang: J. Alloys Compd. 2017, vol. 698, pp. 304–316.

    Article  CAS  Google Scholar 

  36. C. A. Schneider, W. S. Rasband, K. W. Eliceiri: Nat. Methods 2012, vol. 9, pp. 671–675.

    Article  CAS  Google Scholar 

  37. MATLAB: Mathworks, 2015

  38. G. Palumbo, K. T. Aust, E. M. Lehockey, U. Erb, P. Lin: Scripta Mater. May 1998, vol. 38 (11), pp. 1685–1690.

    Article  CAS  Google Scholar 

  39. V. Randle: Acta Mater. Aug. 2004, vol. 52 (14), pp. 4067–4081.

    Article  CAS  Google Scholar 

  40. G. F. Vander Voort, J. J. Friel: Mater. Charact. Dec. 1992, vol. 29 (4), pp. 293–312.

    Article  Google Scholar 

  41. N. F. Hurley: AAPG Bull. 1994, vol. 78 (8), pp. 1173–1185.

    Google Scholar 

  42. S. Wang, E. A. Holm, J. Suni, M. H. Alvi, P. N. Kalu, A. D. Rollett: Acta Mater. 2011, vol. 59 (10), pp. 3872–3882.

    Article  CAS  Google Scholar 

  43. L. Chen, J. Chen, R. A. Lebensohn, Y. Z. Ji, T. W. Heo, S. Bhattacharyya, K. Chang, S. Mathaudhu, Z. K. Liu, L. Q. Chen: Comput. Methods Appl. Mech. Eng. 2015, vol. 285, pp. 829–848.

    Article  Google Scholar 

  44. T. Takaki, Y. Tomita: International Journal of Mechanical Sciences 2010, vol. 52 (2), pp. 320–328.

    Article  Google Scholar 

  45. H. S. Zurob, Y. Bréchet, J. Dunlop: Acta Mater. 2006, vol. 54 (15), pp. 3983–3990.

    Article  CAS  Google Scholar 

  46. J. E. Hatch: Aluminum: Properties and Physical Metallurgy: Subsequent Edition, ASM International, Metals Park, OH, 1984.

    Google Scholar 

  47. M. E. Kassner: Fundamentals of Creep in Metals and Alloys, Butterworth-Heinemann, Waltham, MA, 2015.

    Google Scholar 

  48. A.C.E. Reid, R.C. Lua, R.E. Garcia, V.R. Coffman, S.A. Langer: Int. J. Mater. Prod. Technol., 2009

  49. M.C. Mangalick and N.F. Fiore: Trans. Met. Soc. AIME, 1968, vol. 242, No. 11

  50. M. E. Kassner, T. A. Hayes: Int. J. Plast. 2003, vol. 19 (10), pp. 1715–1748.

    Article  Google Scholar 

  51. M. P. Petkov, J. Hu, E. Tarleton, A. C. F. Cocks: Int. J. Solids Struct. 2019, vol. 171, pp. 54–80.

    Article  CAS  Google Scholar 

  52. G. Venkataramani, D. Deka, S. Ghosh: J. Eng. Mater. Technol. 2006, vol. 128 (3), pp. 356–365.

    Article  CAS  Google Scholar 

  53. V. Herrera-Solaz, L. Patriarca, S. Foletti, J. Segurado, M. Niffenegger: Mater. Sci. Eng. A 2019, vol. 751, pp. 99–106.

    Article  CAS  Google Scholar 

  54. D. B. Miracle, O. N. Senkov: Acta Mater. 2017, vol. 122, pp. 448–511.

    Article  CAS  Google Scholar 

  55. O. Muránsky, C. Yang, H. Zhu, I. Karatchevtseva, P. Sláma, Z. Nový, L. Edwards: Corros. Sci. 2019, vol. 159, pp. 108087.

    Article  Google Scholar 

  56. R. Wright, T.-L. Sham: Status of Metallic Structural Materials for Molten Salt Reactors: Tech. Rep. INL/EXT-18-45171. United States Department of Energy: Idaho National Laboratory May 2018

Download references

Acknowledgments

CMB acknowledges A. D. Rollett for fruitful discussions on the statistical analysis and J. W. Bishop for suggesting methods for the spatial analysis. The authors thank A. Baskaran for performing the grain growth simulation. The authors thank P. Tait of Methanex for supporting this research.

Conflict of interest

The authors declare that they have no conflicts of interest.

Funding

Research funded by Methanex New Zealand Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine M. Bishop.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 23, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bishop, C.M., Mucalo, S.P., Kral, M.V. et al. Continuous Grain Size Gradients in Austenitic Incoloy 800H: Design, Processing, and Characterization. Metall Mater Trans A 51, 1719–1731 (2020). https://doi.org/10.1007/s11661-019-05622-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05622-1

Navigation