Skip to main content
Log in

Ferrite and Spheroidized Cementite Ultrafine Microstructure Formation in an Fe-0.67 Pct C Steel for Railway Wheels under Simulated Service Conditions

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The microstructure development of a high-carbon steel (0.67 pct C) for railway wheels as they are affected by rolling contact with rail tracks and by cyclic frictional heat from braking is studied in the vicinity of the contact surface by scanning electron microscopy (SEM) and electron backscattered diffraction. An ultrafine microstructure consisting of ferrite grains with a size of less than 1 μm and spheroidized cementite particles is formed in the region up to 100 μm below the contact surface. The generation of low-angle sub-boundaries associated with the rearrangement of accumulated dislocations involved in continuous recrystallization of ferrite microstructure contributes to the microstructure refinement at temperatures lower than A1 temperature (1000 K). Fine spheroidized cementite particles with uniform distribution obstruct the migration of high-angle grain boundaries, by which the dislocation density is maintained sufficiently high for the formation of sub-boundaries. The formation of a texture, corresponding to the surface texture typically formed in low-carbon steels by hot rolling without lubrication at ferritic temperatures, is observed in the ultrarefined microstructure region. The results drawn from this study strongly indicate the occurrence of “in-situ microstructure control” under service conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. E. Kabo and A. Ekberg: Wear, 2002, vol. 253, pp. 26–34.

    Article  CAS  Google Scholar 

  2. A. Ekberg and E. Kabo: Wear, 2005, vol. 258, pp. 1288–1300.

    Article  CAS  Google Scholar 

  3. K. Handa, Y. Kimura, and Y. Mishima: Proc. Materials Science and Technology (MS&T) 2008, Pittsburgh, PA, Oct. 5–9, 2008, The Printing House, Inc., Stoughton, WI, pp. 2001–09.

  4. Japanese Standards Association: JIS E 5401-1, JSA, Tokyo, Japan, 1998.

  5. International Union of Railways: UIC CODE 541-3, 5th ed., UIC, Paris, France, 2004.

  6. S.P. Timoshenko and J.N. Goodier: Theory of Elasticity, McGraw-Hill Book Co., New York, NY, 1970, p. 414.

    MATH  Google Scholar 

  7. D.M. Turley: Mater. Sci. Eng. A, 1975, vol. 19, pp. 79–86.

    Article  CAS  Google Scholar 

  8. S.B. Newcomb and W.M. Stobbs: Mater. Sci. Eng. A, 1984, vol. 66, pp. 195–204.

    Article  CAS  Google Scholar 

  9. W. Lojkowski, M. Djahanbakhash, G. Bürkle, S. Gierlotka, W. Zielinski, and H.-J. Fecht: Mater. Sci. Eng. A, 2001, vol. 303, pp. 197–208.

    Article  Google Scholar 

  10. L. Wang, A. Pyzalla, W. Stadlbauer, and E.A. Werner: Mater. Sci. Eng. A, 2003, vol. 359, pp. 31–43.

    Article  Google Scholar 

  11. H.W. Zhang, S. Ohsaki, S. Mitao, M. Ohnuma, and K. Hono: Mater. Sci. Eng. A, 2006, vol. 421, pp. 191–99.

    Article  Google Scholar 

  12. S.M. Zakharov and I.G. Goryacheva: Wear, 2005, vol. 258, pp. 1142–47.

    Article  CAS  Google Scholar 

  13. J.G. Li, M. Umemoto, Y. Todaka, and K. Tsuchiya: Acta Mater., 2007, vol. 55, pp. 1397–1406.

    Article  CAS  Google Scholar 

  14. J.G. Li, M. Umemoto, Y. Todaka, and K. Tsuchiya: Mater. Sci. Eng. A, 2006, vols. 435–436, pp. 383–88.

    Google Scholar 

  15. V.N. Gridnev and V.G. Gavrilyuk: Phys. Met., 1982, vol. 4, pp. 531–51.

    Google Scholar 

  16. J. Languillaume, G. Kapelski, and B. Baudelet: Acta Mater., 1997, vol. 45, pp. 1201–12.

    Article  CAS  Google Scholar 

  17. V.G. Gavriljuk: Mater. Sci. Eng. A, 2003, vol. 345, pp. 81–89.

    Article  Google Scholar 

  18. Y. Ivanisenko, W. Lojkowski, R.Z. Valiev, and H.-J. Fecht: Acta Mater., 2003, vol. 51, pp. 5555–70.

    Article  CAS  Google Scholar 

  19. X. Sauvage and Y. Ivanisenko: J. Mater. Sci., 2007, vol. 42, pp. 1615–21.

    Article  CAS  ADS  Google Scholar 

  20. R. Song, D. Ponge, D. Raabe, and R. Kaspar: Acta Mater., 2005, vol. 53, pp. 845–58.

    Article  CAS  Google Scholar 

  21. A. Ohmori, S. Torizuka, K. Nagai, N. Koseki, and Y. Kogo: Mater. Trans. JIM, 2004, vol. 45, pp. 2224–31.

    Article  CAS  Google Scholar 

  22. S.V.S.N. Murty, S. Torizuka, and K. Nagai: Mater. Sci. Eng. A, 2005, vol. 410, pp. 319–23.

    Article  Google Scholar 

  23. L. Storojeva, D. Ponge, R. Kaspar, and D. Raabe: Acta Mater., 2004, vol. 52, pp. 2209–20.

    Article  CAS  Google Scholar 

  24. R. Song, D. Ponge, D. Raabe, J.G. Speer, and D.K. Matlock: Mater. Sci. Eng. A, 2006, vol. 441, pp. 1–17.

    Article  Google Scholar 

  25. T. Sakai, Y. Saito, and K. Kato: Trans. ISIJ, 1988, vol. 28, pp. 1036–42.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuyuki Handa.

Additional information

Manuscript submitted February 27, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Handa, K., Kimura, Y. & Mishima, Y. Ferrite and Spheroidized Cementite Ultrafine Microstructure Formation in an Fe-0.67 Pct C Steel for Railway Wheels under Simulated Service Conditions. Metall Mater Trans A 40, 2901–2908 (2009). https://doi.org/10.1007/s11661-009-0015-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-0015-y

Keywords

Navigation