Skip to main content

Damage and Microstructure Evolution in Cast Hadfield Steels Used in Railway Crossings

  • Chapter
  • First Online:
Intelligent Quality Assessment of Railway Switches and Crossings

Part of the book series: Springer Series in Reliability Engineering ((RELIABILITY))

  • 550 Accesses

Abstract

Although the damage development in the railway steels is relatively well documented in the scientific literature, its appearance in railway crossings remains a quite complicated issue because of the extreme loading conditions during the train passage. The exact local conditions cannot be determined with sufficient accuracy, but the steel microstructure contains the traces of the mechanisms of microstructure and damage evolution. In this work, we discuss the microstructural evolution and damage in a field-loaded railway crossing made of cast austenitic Hadfield steel and subjected to impact and rolling contact fatigue (RCF) loading. A nanoscale twinning substructure surrounded by dislocation cells and a high dislocation density are identified using Electron Channeling Contrast Imaging (ECCI) and Transmission Electron Microscopy (TEM) in the deformed microstructure of Hadfield steels. The effect of these substructures as well as of the non-metallic inclusions and other casting defects on the damage development in the austenitic Hadfield steels is also discussed. Additionally, the strain-induced transformation of the austenite into martensite in the deformed crossing surface is studied by X-ray diffraction and magnetometer measurements. The results do not show evidence of strain-induced austenite-to-martensite transformation under impact and RCF loading of the railway crossings. ECCI in controlled diffraction conditions is used to study the fatigue crack growth in undeformed cast Hadfield steel specimens when subjected to laboratory scale fatigue testing. Furthermore, the role of twins and grain boundaries on the fatigue crack growth is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adler PH, Olson GB, Owen WS (1986) Strain hardening of Hadfield manganese steel. Metall Mater Trans A 17:1725–1737

    Article  Google Scholar 

  2. Yan W, Fang L, Sun K, Xu Y (2007) Effect of surface work hardening on wear behavior of Hadfield steel. Mater Sci Eng A 460:542–549

    Article  Google Scholar 

  3. Srivastava AK, Das K (2008) Microstructural characterization of Hadfield austenitic manganese steel. J Mater Sci 43:5654–5658

    Article  Google Scholar 

  4. Lv B, Zhang M, Zhang FC, Zheng CL, Feng XY, Qian LH, Qin XB (2012) Micro-mechanism of rolling contact fatigue in Hadfield steel crossing. Int J Fatigue 44:273–278

    Article  Google Scholar 

  5. Harzallah R, Mouftiez A, Felder E, Hariri S, Maujean J-P (2010) Rolling contact fatigue of Hadfield steel X120Mn12. Wear 269:647–654. https://doi.org/10.1016/J.WEAR.2010.07.001

    Article  Google Scholar 

  6. Kumar A, Makineni SK, Dutta A, Goulas C, Steenbergen M, Petrov RH, Sietsma J (2019) Design of high-strength and damage-resistant carbide-free fine bainitic steels for railway crossing applications. Mater Sci Eng A 759:210–223. https://doi.org/10.1016/J.MSEA.2019.05.043

    Article  Google Scholar 

  7. Garnham JE, Davis CL (2008) The role of deformed rail microstructure on rolling contact fatigue initiation. Wear 265:1363–1372. https://doi.org/10.1016/J.WEAR.2008.02.042

    Article  Google Scholar 

  8. Singh A, Dao M, Lu L, Suresh S (2011) Deformation, structural changes and damage evolution in nanotwinned copper under repeated frictional contact sliding. Acta Mater 59:7311–7324. https://doi.org/10.1016/J.ACTAMAT.2011.08.014

    Article  Google Scholar 

  9. Morris WL (1980) The noncontinuum crack tip deformation behavior of surface microcracks. Metall Trans A 11:1117–1123. https://doi.org/10.1007/BF02668135

    Article  Google Scholar 

  10. King A, Ludwig W, Herbig M, Buffière JY, Khan AA, Stevens N, Marrow TJ (2011) Three-dimensional in situ observations of short fatigue crack growth in magnesium. Acta Mater 59:6761–6771. https://doi.org/10.1016/J.ACTAMAT.2011.07.034

    Article  Google Scholar 

  11. Güngör S, Edwards L (1993) Effect of surface texture on the initiation and propagation of small fatigue cracks in a forged 6082 aluminium alloy. Mater Sci Eng A 160:17–24. https://doi.org/10.1016/0921-5093(93)90493-X

    Article  Google Scholar 

  12. Herbig M, King A, Reischig P, Proudhon H, Lauridsen EM, Marrow J, Buffière JY, Ludwig W (2011) 3-D growth of a short fatigue crack within a polycrystalline microstructure studied using combined diffraction and phase-contrast X-ray tomography. Acta Mater 59:590–601. https://doi.org/10.1016/J.ACTAMAT.2010.09.063

    Article  Google Scholar 

  13. Suresh S (1983) Crack deflection: implications for the growth of long and short fatigue cracks. Metall Trans A 14:2375–2385. https://doi.org/10.1007/BF02663313

    Article  Google Scholar 

  14. Navarro A, De Los Rios ER (1992) Fatigue crack growth modelling by successive blocking of dislocations. Proc R Soc A Math Phys Eng Sci 437:375–390. https://doi.org/10.1098/rspa.1992.0067

  15. Liu L, Wang J, Gong SK, Mao SX (2014) Atomistic observation of a crack tip approaching coherent twin boundaries. Sci Rep 4:4397

    Article  Google Scholar 

  16. Sinha T, Kulkarni Y (2014) Alternating brittle and ductile response of coherent twin boundaries in nanotwinned metals. J Appl Phys 116:183505

    Article  Google Scholar 

  17. Xiao JH, Zhang FC, Qian LH (2013) Contact stress and residual stress in the nose rail of a high manganese steel crossing due to wheel contact loading. Fatigue Fract Eng Mater Struct 37:219–226. https://doi.org/10.1111/ffe.12108

    Article  Google Scholar 

  18. Yan W, Fang L, Zheng Z, Sun K, Xu Y (2009) Effect of surface nanocrystallization on abrasive wear properties in Hadfield steel. Tribol Int 42:634–641

    Article  Google Scholar 

  19. Kang J, Zhang FC, Long XY, Lv B (2014) Cyclic deformation and fatigue behaviors of Hadfield manganese steel. Mater Sci Eng A 591:59–68. https://doi.org/10.1016/J.MSEA.2013.10.072

    Article  Google Scholar 

  20. Wei-yong W, Bing L, Venkatesh K (2013) Effect of temperature on strength and elastic modulus of high-strength steel. J Mater Civ Eng 25:174–182. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000600

    Article  Google Scholar 

  21. Qian L, Feng X, Zhang F (2011) Deformed microstructure and hardness of Hadfield high manganese steel. Mater Trans 52:1623–1628

    Article  Google Scholar 

  22. Zhao L, van Dijk N, Brück E, Sietsma J, van der Zwaag S (2001) Magnetic and X-ray diffraction measurements for the determination of retained austenite in TRIP steels. Mater Sci Eng A 313:145–152. https://doi.org/10.1016/S0921-5093(01)00965-0

    Article  Google Scholar 

  23. Van Tol RT (2014) Microstructure evolution in deformed austenitic Twinning Induced Plasticity steels, Delft University of Technology. https://doi.org/10.4233/uuid:b2a057e2-c545-4bcc-854c-fe4b9344e486

  24. Zaefferer S, Elhami N-N (2014) Theory and application of electron channelling contrast imaging under controlled diffraction conditions. Acta Mater 75:20–50. https://doi.org/10.1016/J.ACTAMAT.2014.04.018

    Article  Google Scholar 

  25. Gutierrez-Urrutia I, Raabe D (2012) Grain size effect on strain hardening in twinning-induced plasticity steels. Scr Mater 66:992–996. https://doi.org/10.1016/J.SCRIPTAMAT.2012.01.037

    Article  Google Scholar 

  26. Gutierrez-Urrutia I, Zaefferer S, Raabe D (2010) The effect of grain size and grain orientation on deformation twinning in a Fe–22 wt.% Mn–0.6 wt.% C TWIP steel. Mater Sci Eng A 527:3552–3560. https://doi.org/10.1016/j.msea.2010.02.041

  27. Gutierrez-Urrutia I, Zaefferer S, Raabe D (2009) Electron channeling contrast imaging of twins and dislocations in twinning-induced plasticity steels under controlled diffraction conditions in a scanning electron microscope. Scr Mater 61:737–740. https://doi.org/10.1016/J.SCRIPTAMAT.2009.06.018

    Article  Google Scholar 

  28. Gutierrez-Urrutia I, Zaefferer S, Raabe D (2013) Coupling of electron channeling with EBSD: toward the quantitative characterization of deformation structures in the sem. JOM 65:1229–1236. https://doi.org/10.1007/s11837-013-0678-0

    Article  Google Scholar 

  29. Kumar A, Agarwal G, Petrov R, Goto S, Sietsma J, Herbig M (2019) Microstructural evolution of white and brown etching layers in pearlitic rail steels. Acta Mater. https://doi.org/10.1016/J.ACTAMAT.2019.04.012

    Article  Google Scholar 

  30. Makineni SK, Kumar A, Lenz M, Kontis P, Meiners T, Zenk C, Zaefferer S, Eggeler G, Neumeier S, Spiecker E, Raabe D, Gault B (2018) On the diffusive phase transformation mechanism assisted by extended dislocations during creep of a single crystal CoNi-based superalloy. Acta Mater 155. https://doi.org/10.1016/j.actamat.2018.05.074

  31. Bay B, Hansen N, Hughes DA, Kuhlmann-Wilsdorf D (1992) Overview no. 96 evolution of f.c.c. deformation structures in polyslip. Acta Metall Mater 40: 205–219. https://doi.org/10.1016/0956-7151(92)90296-q

  32. Hansen N, Jensen DJ (1997) Development of microstructure in FCC metals during cold work. Philos Trans R Soc London A Math Phys Eng Sci 357:1447–1469

    Google Scholar 

  33. Beladi H, Timokhina IB, Estrin Y, Kim J, De Cooman BC, Kim SK (2011) Orientation dependence of twinning and strain hardening behaviour of a high manganese twinning induced plasticity steel with polycrystalline structure. Acta Mater 59:7787–7799. https://doi.org/10.1016/J.ACTAMAT.2011.08.031

    Article  Google Scholar 

  34. Steinmetz DR, Jäpel T, Wietbrock B, Eisenlohr P, Gutierrez-Urrutia I, Saeed-Akbari A, Hickel T, Roters F, Raabe D (2013) Revealing the strain-hardening behavior of twinning-induced plasticity steels: theory, simulations, experiments. Acta Mater 61:494–510. https://doi.org/10.1016/J.ACTAMAT.2012.09.064

    Article  Google Scholar 

  35. Agarwal G, Kumar A, Gao H, Amirthalingam M, Moon SC, Dippenaar RJ, Richardson IM, Hermans MJM (2018) Study of solidification cracking in a transformation-induced plasticity-aided steel. Metall Mater Trans A Phys Metall Mater Sci. https://doi.org/10.1007/s11661-018-4505-7

  36. Agarwal G, Kumar A, Richardson IM, Hermans MJM (2019) Evaluation of solidification cracking susceptibility during laser welding in advanced high strength automotive steels. Mater Des 183:108104. https://doi.org/10.1016/j.matdes.2019.108104

    Article  Google Scholar 

  37. Sun D, Garimella SV (2007) Numerical and experimental investigation of solidification shrinkage. Numer Heat Transf Part A Appl 52:145–162. https://doi.org/10.1080/10407780601115079

    Article  Google Scholar 

  38. Hardin RA, Beckermann C (2013) Effect of porosity on deformation, damage, and fracture of cast steel. Metall Mater Trans A 44:5316–5332. https://doi.org/10.1007/s11661-013-1669-z

    Article  Google Scholar 

  39. Peters NW, Eng P (2005) The performance of Hadfield’s manganese steel as it relates to manufacture, Dostupné Na Internetu. Accessed May 11, 2015. http://www.arema.org/files/library/2005_Conference_Proceedings/00040.pdf

  40. Grabulov A, Petrov R, Zandbergen HW (2010) EBSD investigation of the crack initiation and TEM/FIB analyses of the microstructural changes around the cracks formed under Rolling Contact Fatigue (RCF). Int J Fatigue 32:576–583. https://doi.org/10.1016/J.IJFATIGUE.2009.07.002

    Article  Google Scholar 

  41. Kumar A, Dutta A, Makineni SK, Herbig M, Petrov RH, Sietsma J (2019) In-situ observation of strain partitioning and damage development in continuously cooled carbide-free bainitic steels using micro digital image correlation. Mater Sci Eng A 757:107–116. https://doi.org/10.1016/J.MSEA.2019.04.098

    Article  Google Scholar 

  42. Collette G, Crussard C, Kohn A, Plateau J, Pomey G, Weisz M (1957) Contribution à l’étude des transformations des austénites à 12% Mn. Rev Met Paris 54:433–486. https://doi.org/10.1051/metal/195754060433

    Article  Google Scholar 

  43. Spreadborough J (2018) Stacking faults in iron–manganese and cobalt–nickel. Acta Crystallogr 13:603–605. https://doi.org/10.1107/S0365110X60001448

    Article  Google Scholar 

  44. Olson GB, Cohen M (1972) A mechanism for the strain-induced nucleation of martensitic transformations. J Less Common Met 28:107–118

    Article  Google Scholar 

  45. Pickering EJ (2013) Macrosegregation in steel ingots: the applicability of modelling and characterisation techniques. ISIJ Int 53:935–949

    Article  Google Scholar 

  46. Takahashi J, Kawakami K, Ueda M (2010) Atom probe tomography analysis of the white etching layer in a rail track surface. Acta Mater 58:3602–3612. https://doi.org/10.1016/J.ACTAMAT.2010.02.030

    Article  Google Scholar 

  47. Mazancová E, Mazanec K (2009) Stacking fault energy in high manganese alloys. Mater Eng 16:26–31

    Google Scholar 

  48. Pierce DT, Jiménez JA, Bentley J, Raabe D, Wittig JE (2015) The influence of stacking fault energy on the microstructural and strain-hardening evolution of Fe–Mn–Al–Si steels during tensile deformation. Acta Mater 100:178–190. https://doi.org/10.1016/J.ACTAMAT.2015.08.030

    Article  Google Scholar 

  49. Jost N, Schmidt I (1986) Friction-induced martensitic transformation in austenitic manganese steels. Wear 111:377–389. https://doi.org/10.1016/0043-1648(86)90134-1

    Article  Google Scholar 

  50. Pineau AG, Pelloux RM (1974) Influence of strain-induced martensitic transformations on fatigue crack growth rates in stainless steels. Metall Trans 5:1103–1112. https://doi.org/10.1007/BF02644322

    Article  Google Scholar 

  51. Baudry G, Pineau A (1977) Influence of strain-induced martensitic transformation on the low-cycle fatigue behavior of a stainless steel. Mater Sci Eng 28:229–242. https://doi.org/10.1016/0025-5416(77)90176-8

    Article  Google Scholar 

  52. Das A, Tarafder S (2009) Experimental investigation on martensitic transformation and fracture morphologies of austenitic stainless steel. Int J Plast 25:2222–2247. https://doi.org/10.1016/J.IJPLAS.2009.03.003

    Article  Google Scholar 

  53. Pippan R, Hohenwarter A (2016) The importance of fracture toughness in ultrafine and nanocrystalline bulk materials. Mater Res Lett 4:127–136

    Article  Google Scholar 

  54. Suresh S, Ritchie RO (1984) Propagation of short fatigue cracks. Int Met Rev 29:445–475. https://doi.org/10.1179/imtr.1984.29.1.445

    Article  Google Scholar 

  55. Kumar A, Saxena AK, Kirchlechner C, Herbig M, Brinkmann S, Petrov RH, Sietsma J (2019) In situ study on fracture behaviour of white etching layers formed on rails. Acta Mater. https://doi.org/10.1016/J.ACTAMAT.2019.08.060

    Article  Google Scholar 

  56. Goulas C, Kumar A, Mecozzi MG, Castro-Cerda FM, Herbig M, Petrov RH, Sietsma J (2019) Atomic-scale investigations of isothermally formed bainite microstructures in 51CrV4 spring steel. Mater Charact. https://doi.org/10.1016/j.matchar.2019.03.038

  57. Chen YQ, Pan SP, Zhou MZ, Yi DQ, Xu DZ, Xu YF (2013) Effects of inclusions, grain boundaries and grain orientations on the fatigue crack initiation and propagation behavior of 2524-T3 Al alloy. Mater Sci Eng A 580:150–158. https://doi.org/10.1016/J.MSEA.2013.05.053

    Article  Google Scholar 

  58. Zhai T, Wilkinson AJ, Martin JW (2000) A crystallographic mechanism for fatigue crack propagation through grain boundaries. Acta Mater 48:4917–4927. https://doi.org/10.1016/S1359-6454(00)00214-7

    Article  Google Scholar 

  59. Taylor D, Knott JF (1981) Fatigue crack propagation behaviour of short cracks; the effect of microstructure. Fatigue Fract Eng Mater Struct 4:147–155

    Article  Google Scholar 

  60. Saxena AK, Kumar A, Brinckmann S, Herbig M, Dehm G, Kirchlechner C (2019) Micro fracture investigations of white etching layers. Mater Des 180:107892. https://doi.org/10.1016/j.matdes.2019.107892

    Article  Google Scholar 

Download references

Acknowledgements

This research was carried out under project number F91.10.12475b in the framework of the Partnership Program of the Materials innovation institute M2i (www.m2i.nl) and the Foundation for Fundamental Research on Matter (FOM) (www.fom.nl), which is part of the Netherlands Organisation for Scientific Research (www.nwo.nl). Authors would like to thank Dr. Michael Herbig, Max-Planck-Institut für Eisenforschung GmbH, for providing necessary experimental facilities for this research. We would like to thank ProRail for its financial support and arranging the specimens for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jilt Sietsma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, A., Petrov, R., Sietsma, J. (2021). Damage and Microstructure Evolution in Cast Hadfield Steels Used in Railway Crossings. In: Galeazzi, R., Kjartansson Danielsen, H., Kjær Ersbøll, B., Juul Jensen, D., Santos, I. (eds) Intelligent Quality Assessment of Railway Switches and Crossings. Springer Series in Reliability Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-62472-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62472-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62471-2

  • Online ISBN: 978-3-030-62472-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics