Skip to main content
Log in

Creep Behavior and Damage of Ni-Base Superalloys PM 1000 and PM 3030

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Two oxide dispersion strengthening (ODS) nickel-base superalloys, a solely dispersion-strengthened alloy (PM 1000) and an additionally γ′-strengthened alloy (PM 3030) are investigated regarding creep resistance at temperatures between 600 °C and 1000 °C. The creep strength advantage of PM 3030 over PM 1000 decreases as the temperature increases due to the thermal instability of the γ′ phase. The particle strengthening contribution in both alloys increases linearly with load. However, solid solution softening leads to an apparent drop in particle strengthening in PM 1000. Deformation concentration in slip bands is more accentuated in PM 3030-R34 due to additional γ′ strengthening combined with strongly textured coarse and elongated grain structure. Finer, equiaxed grains reduce creep strength at higher temperatures due to grain boundary deformation processes and premature pore formation, but have only minor impact at low and intermediate temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. B. deMestral, G. Eggeler, and H.J. Klam: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 879–90.

    Article  ADS  CAS  Google Scholar 

  2. J.J. Stevens and W.D. Nix: Metall. Mater. Trans. A, 1985, vol. 16A, pp. 1307–24.

    ADS  Google Scholar 

  3. H. Biermann: Habilitation Thesis, University of Erlangen-Nürnberg, Fortschritt-Berichte VDI, Düsseldorf, 1999.

  4. M. Nganbe: Dissertation Thesis, University of Dresden, Cuviller Verlag, Göttingen, 2002.

  5. M. Heilmaier: Dissertation Thesis, University of Erlangen-Nürnberg, Fortschritt-Berichte VDI, Düsseldorf, 1993.

  6. M. Heilmaier and B. Reppich: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3861–70.

    Article  ADS  CAS  Google Scholar 

  7. J.S. Benjamin: Metall. Trans., 1970, vol. 1, pp. 2943–51.

    CAS  Google Scholar 

  8. R.L. Cairns, L.R. Curwick, and J.S. Benjamin: Metall. Trans. A, 1975, vol. 6A, pp. 179–88.

    ADS  Google Scholar 

  9. R. Fernandez and G. Gonzalez-Donsel: Acta Mater., 2008, vol. 56, pp. 2549–62.

    Article  CAS  Google Scholar 

  10. F.R.N. Nabarro and H.L. Villiers: The Physics of Creep: Creep and Creep-Resistant Alloys, Taylor & Francis, London, 1995.

    Google Scholar 

  11. H.J. Frost and M.F. Ashby: Deformation-Mechanism-Maps. The Plasticity and Creep of Metals and Ceramics, Pergamon Press, Oxford, United Kingdom, 1982.

    Google Scholar 

  12. G.E. Dieter: Mechanical Metallurgy, SI Metric Editions, McGraw-Hill Book Company, London, 1986.

  13. F.E.H. Müller, M. Nganbe, H.J. Klauss and M. Heilmaier: J. Adv. Mater., 2000, vol. 32, pp. 9–20.

    Google Scholar 

  14. M. Nganbe and M. Heilmaier: Int. J. Plast., 2009, vol. 25, pp. 822–37.

    Article  MATH  CAS  Google Scholar 

  15. J.S. Benjamin and T.E. Volin: Metall. Trans., 1974, vol. 5, pp. 1929–34.

    Article  CAS  Google Scholar 

  16. E. Arzt: Res. Mech., 1991, vol. 31, pp. 399–453.

    Google Scholar 

  17. J.H. Weber and M.J. Bomford: Mater. Trans. A, 1976, vol. 7A, pp. 435–41.

    Article  CAS  Google Scholar 

  18. L.P. Kubin, B. Lisiecki, and P. Garon: Phil. Mag. A, 1995, vol. 71A, pp. 991–1009.

    Article  ADS  Google Scholar 

  19. J.D. Whittenberger: Mater. Trans. A, 1984, vol. 15A, pp. 1753–62.

    Article  CAS  Google Scholar 

  20. D. Bettge, W. Oesterle, and J. Ziebs: Z. Metallkd., 1995, vol. 86, pp. 190–97.

    CAS  Google Scholar 

  21. M. Heilmaier, M. Nganbe, and F.E.H. Müller: Proc. 9th Int. Symp. on Superalloys, T.M. Pollock and R.D. Kissinger, eds., Elsevier, Amsterdam, 2000, pp. 287–98.

  22. J.K. Gregory, J.G. Gibeling, and W.D. Nix: Mater. Trans. A, 1985, vol. 16A, pp. 777–87.

    Article  CAS  Google Scholar 

  23. T. Hayashi, P.M. Sarosi, J.H. Schneibel, and M.J. Mills: Acta Mater., 2008, vol. 56, pp. 1407–16.

    Article  CAS  Google Scholar 

  24. Y. Estrin, M. Heilmaier, and G. Drew: Mater. Sci. Eng. A, 1999, vol. 272 (1A), pp. 163–73.

    Google Scholar 

  25. W.C. Oliver and W.D. Nix: Acta Metall., 1982, vol. 30, pp. 1335–47.

    Article  Google Scholar 

  26. J. Lin and O.D. Sherby: Res. Mech. A, 1980, vols. 291A–293A, pp. 251–93.

    Google Scholar 

  27. E. Arzt and D.S. Wilkinson: Acta Metall., 1986, vol. 34, pp. 1893–98.

    Article  CAS  Google Scholar 

  28. E. Arzt and J. Rösler: Acta Metall., 1988, vol. 36, pp. 1053–60.

    Article  CAS  Google Scholar 

  29. J. Čadek, H. Oikawa, and V. Sustek: Mater. Sci. Eng. A, 1995, vol. 190A, pp. 9–23.

    Google Scholar 

  30. M.E. Kassner and M.T. Perez-Prado: Fundamentals of Creep in Metals and Alloys, Elsevier, Amsterdam, 2004.

    Google Scholar 

  31. B. Reppich: Z. Metallkd., 2002, vol. 93, pp. 605–13.

    CAS  Google Scholar 

  32. R.W. Lund and W.D. Nix: Acta Metall., 1976, vol. 24, pp. 469–81.

    Article  CAS  Google Scholar 

  33. J. Čadek: Creep of Metallic Materials, Elsevier, Amsterdam, 1990.

    Google Scholar 

  34. A.K. Mukherjee, J.E. Bird, and J.E. Dorn: Trans. Am. Soc. Met., 1969, vol. 62, pp. 155–79.

    CAS  Google Scholar 

  35. J. Rösler and E. Arzt: Acta Metall. Mater., 1990, vol. 38, pp. 671–83.

    Article  Google Scholar 

  36. J. Rösler, R. Joos, and E. Arzt: Metall. Trans. A, 1992, vol. 23A, pp. 1521–32.

    ADS  Google Scholar 

  37. M. Nganbe and M. Heilmaier: Mater. Sci. Eng. A, 2004, vols. 387A–389A, pp. 609–12.

    Google Scholar 

  38. R. Lagneborg and B. Bergman: Met. Sci., 1976, vol. 10, pp. 20–28.

    CAS  Google Scholar 

  39. B. Reppich: Z. Metallkd., 1982, vol. 73, pp. 69–67.

    Google Scholar 

  40. B. Reppich, H. Bügler, R. Leistner, and M. Schütze: 2nd Int. Conf. on Creep and Fracture of Engineering Materials and Structures, B. Wilshire and D.R.J. Owen, eds., Pineridge Press, Swansea, 1984, pp. 279–97 and 299–305.

  41. J.D. Parker and B. Wilshire: Met. Sci., 1975, vol. 9, pp. 248–52.

    CAS  Google Scholar 

  42. K.R. Williams and B. Wilshire: Met. Sci., 1973, vol. 7, pp. 176–79.

    Article  CAS  Google Scholar 

  43. M. Heilmaier and B. Reppich: Proc. 5th Int. Conf. on Creep and Fracture of Engineering Materials and Structures, B. Wilshire and R.W. Evans, eds., The Institute of Materials, London, 1993, pp. 231–44.

  44. K.P. Rohrback: Aircraft Eng. Aerospace Technol., 1998, vol. 7, pp. 209–14.

    Article  Google Scholar 

  45. M. Heilmaier, F.E.H. Müller, G. Eisenmeier, and M. Reppich: Scripta Mater., 1998, vol. 39, pp. 1365–70.

    Article  CAS  Google Scholar 

  46. E. Arzt and M.F. Ashby: Scripta Mater., 1982, vol. 16, pp. 1285–90.

    Article  Google Scholar 

  47. B. Reppich: Acta Mater., 1998, vol. 46, pp. 61–67.

    Article  CAS  Google Scholar 

  48. Y. Estrin, S. Arndt, M. Heilmaier, and Y. Brechet: Acta Mater., 1999, vol. 47, pp. 595–606.

    Article  CAS  Google Scholar 

  49. M. Rumi: Dissertation Thesis, University of Berlin, Berlin, 2000.

  50. T.M. Pollock and A.S. Argon: Acta Metall. Mater., 1992, vol. 40, pp. 1–30.

    Article  CAS  Google Scholar 

  51. C. Mayr, G. Eggeler, and A. Dlouhy: Mater. Sci. Eng. A, 1996, vol. 207A, pp. 51–63.

    Google Scholar 

  52. A. Dlouhy, R. Schäublin, and G. Eggeler: Scripta Mater., 1998, vol. 39, pp. 1325–32.

    Article  Google Scholar 

  53. J. Auerswald, D. Mukherji, W. Chen, and R.P. Wahi: in Low Cycle Fatigue and Elasto-Plastic Behavior of Materials, K.T. Rie, and P.D. Portella, eds., Elsevier, Amsterdam, 1998, pp. 351–56.

    Chapter  Google Scholar 

  54. K. Yashiro, F. Kurose, Y. Nakashima, K. Kubo, Y. Tomita, and H.M. Zbib: Int. J. Plast., 2006, vol. 22, pp. 713–23.

    Article  MATH  CAS  Google Scholar 

  55. J.X. Zhang, T. Murakumo, Y. Koizumi, T. Kobayashi, and H. Harada: Acta Mater., 2003, vol. 51, pp. 5073–81.

    Article  CAS  Google Scholar 

  56. F.R.N. Nabarro and M.S. Duesbery: Dislocations in Solids, vol. 10, L1 2 Ordered Alloys, North-Holland Publishing Company, Amsterdam, 1996.

  57. R. Behr, J. Mayer, and E. Arzt: Scripta Metall., 1997, vol. 36, pp. 341–45.

    Article  CAS  Google Scholar 

  58. S.M. Copley and B.H. Kear: Trans. TMS-AIME, 1967, vol. 239, pp. 977–84.

    CAS  Google Scholar 

  59. S.M. Copley and B.H. Kear: Trans. TMS-AIME, 1967, vol. 239, pp. 984–92.

    CAS  Google Scholar 

  60. M. Heilmaier and B. Reppich: Mater. Sci. Eng. A, 1997, vols. 234A–236A, pp. 501–04.

    Google Scholar 

Download references

Acknowledgments

Collaboration with Plansee GmbH (Lechbruck, Germany) and with the Leibniz Institute for Solid State and Materials Research (Dresden, Germany) is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nganbe.

Additional information

Manuscript submitted November 12, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nganbe, M., Heilmaier, M. Creep Behavior and Damage of Ni-Base Superalloys PM 1000 and PM 3030. Metall Mater Trans A 40, 2971–2979 (2009). https://doi.org/10.1007/s11661-009-0003-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-0003-2

Keywords

Navigation