Skip to main content

Advertisement

Log in

Creep Durability of Ni-Base Single Crystal Superalloy Containing Pb Impurity

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of Pb on the creep properties of Ni-base single crystal superalloy was evaluated and compared with the reference data of polycrystalline superalloys. Alloy variants containing 0.04 (no Pb added), 0.9, and 31 ppm of Pb were prepared, and creep tests under different temperatures and stresses (i.e., 800/735, 900/392, 1000/245, 1100/137, and 1150 °C/137 MPa) as well as microstructural observations were conducted. The initial microstructure, such as the γ′ size and volume fraction of γ′, and the γ/γ′ microstructure after the creep test, such as the extent of raft structure formation, were almost identical in all the alloy variants. Moreover, the extent of topologically close-packed or precipitate phase formation could not be correlated with the Pb content. Based on these results and those of the creep tests, it was concluded that Pb did not affect the creep rupture life. In single crystal superalloy, no grain boundary exists, and the results of the field-emission electron-probe microanalysis indicated that Pb was dispersed in the substrate and its segregation did not occur during the creep test. Thus, in contrast to the Ni-base polycrystalline superalloy, no negative effect of Pb on the creep properties of the Ni-base single crystal superalloy was detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

adapted from Ref. [20]

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K. Kawagishi, A. Yeh, T. Yokokawa, T. Kobayashi, Y. Koizumi, and H. Harada: Superalloys 2012, 2012, pp. 189–95.

    Book  Google Scholar 

  2. T. Kobayashi, Y. Koizumi, H. Harada, T. Yokokawa, J.X. Zhang, A. Sato, and A. Sato: J. Jpn. Inst. Met., 2005, vol. 69, pp. 241–44.

    Article  CAS  Google Scholar 

  3. W. Song, X.G. Wang, J.G. Li, L.H. Ye, G.C. Hou, Y.H. Yang, J.L. Liu, J.D. Liu, W.L. Pei, Y.Z. Zhou, and X.F. Sun: J. Mater. Sci. Eng. A., 2020, vol. A772, pp. 1–10.

    Google Scholar 

  4. L. Liu, J. Meng, J. Liu, M. Zou, H. Zhang, X. Sun, and Y. Zhou: J. Mater. Sci. Technol. (Shenyang, China), 2019, vol. 35, pp. 1917–24.

    Article  CAS  Google Scholar 

  5. A. Heckl, S. Neumeier, M. Göken, and R.F. Singer: J. Mater. Sci. Eng. A., 2011, vol. A528, pp. 3435–44.

    Article  CAS  Google Scholar 

  6. A.C. Yeh and S. Tin: Scr. Mater., 2004, vol. 52, pp. 519–24.

    Article  Google Scholar 

  7. R.T. Holt and W. Wallace: Int. Met. Rev., 1976, vol. 21, pp. 1–24.

    Article  CAS  Google Scholar 

  8. T.G. Gibbons: Mater. Sci. Technol., 1985, vol. 1, pp. 1033–39.

    Article  CAS  Google Scholar 

  9. G.B. Thomas and T.B. Gibbons: Met. Technol. (London), 1979, vol. 6, pp. 95–101.

    Article  CAS  Google Scholar 

  10. S. Utada, Y. Joh, M. Osawa, T. Yokokawa, T. Kobayashi, K. Kawagishi, S. Suzuki, and H. Harada: Superalloys 2016, 2016, pp. 591–99.

    Google Scholar 

  11. H. Harada, K. Kawagishi, T. Kobayashi, T. Yokokawa, M. Osawa, M. Yuyama, S. Suzuki, Y. Joh, and S. Utada: US Patent, patent number 10689741 (2020.06.23).

  12. G.L.R. Durber and M. Boneham: Met. Technol. (London), 1984, vol. 11, pp. 428–37.

    Article  CAS  Google Scholar 

  13. O.P. Sinha, M. Chatterjee, V.V.R.S. Sarma, and S.N. Jha: Bull. Mater. Sci., 2005, vol. 28, pp. 379–82.

    Article  CAS  Google Scholar 

  14. D.A. Ford: Met. Technol. (London), 1984, vol. 11, pp. 438–45.

    Article  CAS  Google Scholar 

  15. Y. Iijima and K. Kakehi: J. Jpn. Inst. Met., 2014, vol. 78, pp. 201–04.

    Article  CAS  Google Scholar 

  16. S. Osgerby and T.G. Gibbons: Mater. Sci. Eng. A., 1992, vol. 157, pp. 63–71.

    Article  Google Scholar 

  17. G.B. Thomas and T.B. Gibbons: Mater. Sci. Eng., 1984, vol. 67, pp. 13–23.

    Article  CAS  Google Scholar 

  18. Y. Takata, T. Sugiyama, T. Yokokawa, M. Osawa, M. Yuyama, K. Kawagishi, J. Uzuhashi, T. Ohkubo, H. Harada, and S. Suzuki: National Institute for Materials Science and Waseda University, Japan, unpublished research, 2021.

  19. JIS Z2271, 2010, “Metallic materials-Uniaxial creep testing in tension-Method of test”.

  20. S. Utada, Y. Joh, M. Osawa, T. Yokokawa, T. Sugiyama, T. Kobayashi, K. Kawagishi, S. Suzuki, and H. Harada: Metall. Mater. Trans. A., 2018, vol. 49A, pp. 4029–41.

    Article  Google Scholar 

  21. N. Matan, D.C. Cox, P. Carter, M.A. Rist, C.M.F. Rae, and R.C. Reed: Acta Mater., 1999, vol. 47, pp. 1549–63.

    Article  CAS  Google Scholar 

  22. C.M.F. Rae and R.C. Reed: Acta Mater., 2007, vol. 55, pp. 1067–81.

    Article  CAS  Google Scholar 

  23. R.C. Reed, N. Matan, D.C. Cox, M.A. Rist, and C.M.F. Rae: Acta Mater., 1999, vol. 47, pp. 3367–81.

    Article  CAS  Google Scholar 

  24. J. Coakley, R.C. Reed, J.L.W. Warwick, K.M. Rahman, and D. Dye: Acta Mater., 2012, vol. 60, pp. 2729–38.

    Article  CAS  Google Scholar 

  25. C.M.F. Rae and L. Zhang: Mater. Sci. Technol., 2009, vol. 25, pp. 228–35.

    Article  CAS  Google Scholar 

  26. T. Murakumo, Y. Koizumi, K. Kobayashi, and H. Harada: Superalloys 2004, 2004, pp. 155–62.

    Google Scholar 

  27. J.X. Zhang, T. Murakumo, Y. Koizumi, T. Kobayashi, H. Harada, and S. Masaki, JR: Metall. Mater. Trans. A., 2002, vol. 33A, pp. 3741–46.

  28. A. Sato, T. Yokokawa, Y. Koizumi, T. Kobayashi, and H. Harada: J. Jpn. Inst. Met., 2005, vol. 69, pp. 691–94.

    Article  CAS  Google Scholar 

  29. T. Yokokawa, M. Osawa, K. Nishida, Y. Koizumi, T. Kobayashi, and H. Harada: J. Jpn. Inst. Met., 2004, vol. 68, pp. 138–41.

    Article  CAS  Google Scholar 

  30. Q. Feng, T.K. Nandy, and T.M. Pollock: Mater. Sci. Eng. A., 2004, vol. 373A, pp. 239–49.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Michinari Yuyama of Superalloys and High Temperature Materials Group at NIMS for conducting the creep tests. This work was supported by Council for Science, Technology and Innovation (CSTI), Cross-ministerial Strategic Innovation Promotion Program (SIP), “Materials Integration for revolutionary design system of structural materials” (Funding agency: JST).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahide Horie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horie, T., Kawagishi, K., Takata, Y. et al. Creep Durability of Ni-Base Single Crystal Superalloy Containing Pb Impurity. Metall Mater Trans A 53, 2627–2641 (2022). https://doi.org/10.1007/s11661-022-06692-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06692-4

Navigation