Skip to main content
Log in

Simulation of Nucleation of Proeutectoid Ferrite at Austenite Grain Boundaries during Continuous Cooling

  • Symposium: Solid-State Nucleation and Critical Nuclei during First Order Diffusional Phase Transformations
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The nucleation kinetics of proeutectoid ferrite during continuous cooling in three Fe-C-Mn-Si steels, measured in-situ by three-dimensional X-ray diffraction microscope, are compared with numerical simulation that takes into account differences in the activation energy of nucleation among grain boundary faces, edges, and corners. The essential feature of ferrite nucleation in the 0.21 pct C steel, i.e., nucleation occurred just below Ae3 and ceased at a small undercooling, is reproduced taking into account the site consumption, primarily at grain corners and overlap of solute diffusion fields in the grain boundary region or the matrix and assuming a very small or almost null activation energy of nucleation. In the 0.35 and 0.45 pct C steels, small activation energy, as reported by Offerman et al., was not unequivocally obtained because ferrite nucleation occurred at considerably large undercoolings, even below the paraequilibrium Ae3 in these steels. The increasing rate of the observed particle number with decreasing temperature is considerably smaller than calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Offerman et al. defined a factor Ψ, which consists of the cube of nucleus/matrix interfacial energy and the geometrical factor representing the critical nucleus shape. It is the numerator of the activation energy of nucleation ΔG* = Ψ/(ΔG V )2, where ΔG V is the driving force for nucleation. According to the well-known Wulff theorem,[22] the activation energy of nucleation is expressed as ΔG* = 4V W /(ΔG V )2. Hence, V W (=Ψ/4) is used throughout this article.

  2. In the literature, “orthoequilibrium” has been used in this context. Following the proposition by Hillert and Ågren,[14] the term “full equilibrium” is used in this article.

References

  1. S.E. Offerman, N.H. van Dijk, J. Sietsma, S. van der Zwaag, E.M. Lauridsen, L. Margulies, S. Grigull, H.F. Poulsen: Science, 2002, vol. 298, pp. 1003–08

    Article  CAS  Google Scholar 

  2. S.E. Offerman, N.H. van Dijk, J. Sietsma, S. van der Zwaag, E.M. Lauridsen, L. Margulies, S. Grigull, H.F. Poulsen: Scripta Mater., 2004, vol. 51, pp. 937–41

    Article  CAS  Google Scholar 

  3. S.E. Offerman, N.H. van Dijk, J. Sietsma, E.M. Lauridsen, L. Margulies, S. Grigull, H.F. Poulsen, S. van der Zwaag: Acta Mater., 2004, vol. 52, pp. 4757–66

    Article  CAS  Google Scholar 

  4. S.E. Offerman, N.H. van Dijk, J. Sietsma, E.M. Lauridsen, L. Margulies, S. Grigull, H.F. Poulsen, S. van der Zwaag: NIM B, 2005, vol. 238, pp. 107–10

    Article  CAS  Google Scholar 

  5. S.E. Offerman, N.H. van Dijk, J. Sietsma, E.M. Lauridsen, L. Margulies, S. Grigull, H.F. Poulsen, S. van der Zwaag: NIM B, 2006, vol. 246, pp. 194–200

    Article  CAS  Google Scholar 

  6. W.F. Lange III, M. Enomoto, H.I. Aaronson: Metall. Trans. A, 1988, vol. 19A, pp. 427–40

    CAS  Google Scholar 

  7. M. Enomoto, H.I. Aaronson: Metall. Trans. A, 1986, vol. 17A, pp. 1385–97

    CAS  Google Scholar 

  8. M. Enomoto, W.F. Lange III, H.I. Aaronson: Metall. Trans. A, 1986, vol. 17A, pp. 1399–407

    CAS  Google Scholar 

  9. W.F. Lange III, M. Enomoto, H.I. Aaronson: Int. Mater. Rev., 1989, vol. 34, pp. 125–50

    CAS  Google Scholar 

  10. H.I. Aaronson, W.F. Lange III, G.R. Purdy: Scripta Mater., 2004, vol. 51, pp. 931–35

    Article  CAS  Google Scholar 

  11. Z.G. Yang and M. Enomoto: Proc. Int. Conf. on Solid-Solid Phase Transformations in Inorganic Materials, vol. 1, Diffusional Transformations, J.M. Howe, D.E. Laughlin, J.K. Lee, U. Dahmen, and W.A. Soffa, eds., TMS, Warrendale, 2005, pp. 47–52

  12. S.E. Offerman, H. Strandlund, N.H. van Dijk, J. Sietsma, E.M. Lauridsen, L. Margulies, H.F. Poulsen, J. Agren, S. van der Zwaag: Mater. Sci. Forum, 2007, vol. 550, pp. 357–62

    CAS  Google Scholar 

  13. N.H. van Dijk, S.E. Offerman, J. Sietsma, S. van der Zwaag: Acta Mater., 2007, vol. 55, pp. 4489–98

    Article  CAS  Google Scholar 

  14. M. Hillert, J. Ågren: Scripta Mater., 2004, vol. 50, pp. 697–99

    Article  CAS  Google Scholar 

  15. A. Deschamps, Y. Brechet: Acta Mater., 1999, vol. 47, pp. 293–305

    Article  CAS  Google Scholar 

  16. J.D. Robson, M.J. Jones, P.B. Prangnell: Acta Mater., 2003, vol. 51, pp. 1453–68

    Article  CAS  Google Scholar 

  17. M. Nicholas and A. Deschamps: Acta Mater., 20039, vol. 51, pp. 6077–94

  18. J.D. Robson: Acta Mater., 2004, vol. 52, pp. 4669–76

    Article  CAS  Google Scholar 

  19. N. Fujita, H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2001, vol. 17, pp. 403–08

    Article  CAS  Google Scholar 

  20. J.B. Yang, M. Enomoto: ISIJ Int., 2005, vol. 45, pp. 1335–44

    Article  CAS  Google Scholar 

  21. W. Huang, M. Hillert: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 480–83

    Article  CAS  Google Scholar 

  22. H.I. Aaronson, J.K. Lee: in Lectures on the Theory of Phase Transformations, 2nd ed., H.I. Aaronson, ed., TMS, Warrendale, PA, 1999, pp. 165–229

    Google Scholar 

  23. P.J. Clemm, J.C. Fisher: Acta Metall., 1955, vol. 3, pp. 70–73

    Article  CAS  Google Scholar 

  24. H.B. Aaron, D. Fainstein, G.R. Kotler: J. Appl. Phys., 1970, vol. 41, pp. 4404–10

    Article  Google Scholar 

  25. F.C. Frank: Proc. R. Soc., 1950, vol. A201, pp. 586–99

    Google Scholar 

  26. T. Takeuchi, Y. Adachi, and M. Enomoto: Ibaraki University, Ibaraki, Japan, unpublished research, 2007

  27. N.A. Gjostein, H.A. Domian, H.I. Aaronson, E. Eichen: Acta Metall., 1966, vol. 14, pp. 1637–44

    Article  CAS  Google Scholar 

  28. J.K. Chen, D. Farkas, and W.T. Reynolds, Jr.: Proc. Int. Conf. on Solid-Solid Phase Transformations, W.C. Johnson, J.M. Howe, D.E. Laughlin, and W.A. Soffa, eds., TMS, Warrendale, PA, 1994, pp. 1097–1102

  29. J.K. Chen, D. Farkas, W.T. Reynolds: Acta Mater., 1997, vol. 45, pp. 4415–21

    Article  CAS  Google Scholar 

  30. Z. Yang, R.A. Johnson: Model. Simul. Mater. Sci. Eng., 1993, vol. 1, pp. 707–16

    Article  CAS  Google Scholar 

  31. T. Nagano, M. Enomoto: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 929–37

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors (ME) is profoundly indebted to the late Professor H.I. Aaronson for many invaluable discussions and continual encouragement throughout his career. He also expresses his thanks to Dr. S.E. Offerman for stimulating discussions in the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Enomoto.

Additional information

This article is based on a presentation given in the symposium entitled “Solid-State Nucleation and Critical Nuclei during First Order Diffusional Phase Transformations,” which occurred October 15–19, 2006 during the MS&T meeting in Cincinnati, Ohio under the auspices of the TMS/ASMI Phase Transformations Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enomoto, M., Yang, J. Simulation of Nucleation of Proeutectoid Ferrite at Austenite Grain Boundaries during Continuous Cooling. Metall Mater Trans A 39, 994–1002 (2008). https://doi.org/10.1007/s11661-008-9493-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9493-6

Keywords

Navigation