Skip to main content
Log in

Simulation Study of Heterogeneous Nucleation at Grain Boundaries During the Austenite-Ferrite Phase Transformation: Comparing the Classical Model with the Multi-Phase Field Nudged Elastic Band Method

  • Symposium: PTM 2015: Solid-Solid Phase Transformations in Inorganic Materials
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this work, molecular dynamics (MD) simulations have been used to study the heterogeneous nucleation occurring at grain boundaries (GBs) during the austenite (FCC) phase to ferrite (BCC) phase transformation in a pure Fe polycrystalline system. The critical nucleus properties (including size, shape, and activation energy) determined by classical nucleation theory are compared with those obtained by using a combination of the multi-phase field method (MPFM) and the nudged elastic band (NEB) method. For nucleation events that exhibit low-energy facets completely embedded within the parent FCC phase, there is a good agreement between the MD and the MPFM result with respect to the critical nucleus size, shape, and nucleation energy barrier. For systems where the emerging nucleus contains facets that cross the GB plane, the MPFM-NEB, when compared to MD, yields a better prediction than the classical approach for the nucleus morphology. New observations from the MPFM-NEB method indicate that the critical nucleus shape may change with volume and therefore depends on the nucleation driving force (undercooling).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. Clemm, J. Fisher, Acta Metall. 3, 70–73 (1955)

    Article  Google Scholar 

  2. W. Lange, M. Enomoto, H. Aaronson, Metall. Mater. Trans. A. 19A, 427–40 (1988)

    Article  Google Scholar 

  3. M. Plichta, J. Perepezko, H. Aaronson, W. Lange III, Acta Metall. 28, 1031–40 (1980)

    Article  Google Scholar 

  4. J. Lee, H. Aaronson, Acta Metall. 23, 799–808 (1975)

    Article  Google Scholar 

  5. T. Nagano, M. Enomoto, Metall. Mater. Trans. A. 37A, 929–37 (2006)

    Article  Google Scholar 

  6. J. Lee, H. Aaronson, Acta Metall. 23, 809–20 (1975)

    Article  Google Scholar 

  7. J. Lee, H. Aaronson, Surf. Sci. 47, 692–96 (1975)

    Article  Google Scholar 

  8. H. Bunge, L. Wcislak, H. Klein, U. Garbe, J. Schneider, J. Appl. Cryst. 36, 1240–55 (2003)

    Article  Google Scholar 

  9. J. Jonas, Y. He, S. Godet, Scr. Mater. 52, 175–79 (2005)

    Article  Google Scholar 

  10. S. Zaefferer, J. Ohlert, W. Bleck, Acta Mater. 52, 2765–78 (2004)

    Article  Google Scholar 

  11. F. Abraham, Homogeneous Nucleation Theory: The Pretransition Theory of Vapor Condensation, 1st edn. (Elsevier Inc., Amsterdam, 2012), p. 263

    Google Scholar 

  12. L. Ickes, A. Welti, C. Hoose, U. Lohmann, Phys. Chem. Chem. Phys. 17, 5514–37 (2015)

    Article  Google Scholar 

  13. P.G. Debenedetti, Metastable Liquids: Concepts and Principles (Princeton University Press, Princeton, NJ, 1996), p. 411

    Google Scholar 

  14. S.E. Offerman, N.H. van Dijk, J. Sietsma, S. Grigull, E.M. Lauridsen, L. Margulies, H.F. Poulsen, MTh Rekveldt, S. van der Zwaag, Science 298, 1003–05 (2002)

    Article  Google Scholar 

  15. M. Enomoto, J. Yang, Metall. Mater. Trans. A. 39A, 994–1002 (2008)

    Article  Google Scholar 

  16. S. Auer, D. Frenkel, J. Chem. Phys. 120, 3015–29 (2004)

    Article  Google Scholar 

  17. F. Cherne, M. Baskes, R. Schwarz, S. Srinivasan, W. Klein, Model. Simul. Mater. Sci. Eng. 12, 1063–68 (2004)

    Article  Google Scholar 

  18. R. Aga, J. Morris, J. Hoyt, M. Mendelev, Phys. Rev. Lett. 96, 245701–04 (2006)

    Article  Google Scholar 

  19. P. ten Wolde, M. Ruiz-Montero, D. Frenkel, J. Chem. Phys. 104, 9932–47 (1996)

    Article  Google Scholar 

  20. H. Song, J. Hoyt, Comp. Mater. Sci. 117, 151–63 (2016)

    Article  Google Scholar 

  21. H. Song, J. Hoyt, Model. Simul. Mater. Sci. Eng. 23, 085012–20 (2015)

    Article  Google Scholar 

  22. H. Song, J. Hoyt: to be published, 2016, pp. 5

  23. R. Shi, Y. Wang, Proc. Int. Conf. Solid-Solid Phase Transf. Inorg. Mater. 2015, 837–44 (2015)

    Google Scholar 

  24. G. Ackland, D. Bacon, A. Calder, T. Harry, Philos. Mag. A. 75, 713–32 (1997)

    Article  Google Scholar 

  25. S. Plimpton, J. Comp. Phys. 117, 1–19 (1995)

    Article  Google Scholar 

  26. LAMMPS, Sandia National Laboratories (http://lammps.sandia.gov)

  27. R. Zucker, D. Chatain, U. Dahmen, S. Hagege, W. Carter, J. Mater. Sci. 47, 8290 (2012)

    Article  Google Scholar 

  28. W. Winterbottom, Acta Metall. 15, 303–10 (1967)

    Article  Google Scholar 

  29. j. Lee, H. Aaronson: Lectures on the Theory of Phase Transformations, 2nd ed., TMS., 1999, pp. 165-229

    Google Scholar 

  30. I. Steinbach, Model. Simul. Mater. Sci. Eng. 17, 073001–31 (2009)

    Article  Google Scholar 

  31. H. Song, J. Hoyt, Acta Mate. 60, 4328–35 (2012)

    Article  Google Scholar 

  32. R. Shi, N. Ma, Y. Wang, Acta Mater. 60, 4172–84 (2012)

    Article  Google Scholar 

  33. N. Ma, Q. Chen, Y. Wang, Scr. Mater. 54, 1919–24 (2006)

    Article  Google Scholar 

  34. M. Fleck, L. Mushongera, D. Pilipenko, K. Ankit, H. Emmerich, Eur. Phys. J. Plus 126, 1–11 (2011)

    Article  Google Scholar 

  35. C. Herring: Structure and Properties of Solid Surfaces, R. Gomer, C. Smith, ed., University of Chicago Press., IL, 1953, pp. 5-73

    Google Scholar 

  36. W. Guo, R. Spatschek, I. Steinbach, Phys. D 240, 382–388 (2011)

    Article  Google Scholar 

  37. H. Jónsson, G. Mills, K. Jacobsen: Classical and Quantum Dynamics in Condensed Phase Simulations, B. Berne, G. Ciccotti, D. Coker, ed., World Scientific Ltd., Singapore,1998, p. 385

    Chapter  Google Scholar 

  38. C. Shen, J. Li, Y. Wang, Metal. Trans. A. 39, 976–83 (2007)

    Article  Google Scholar 

  39. T. Zhu, J. Li, A. Samanta, H.G. Kim, S. Suresh, Proc. Natl Acad. Sci. 104, 3031–36 (2007)

    Article  Google Scholar 

  40. J. van der Merwe, G. Shiflet, Acta Mater. 42, 1199–1205 (1994)

    Article  Google Scholar 

  41. G. Shiflet, J. van der Merwe, Acta Mater. 42, 1189–98 (1994)

    Article  Google Scholar 

  42. E. Johnson, A. Johansen, U. Dahmen, S. Chen, T. Fujii, Mater. Sci. Eng. A. 304–306, 187–93 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of a Natural Sciences and Engineering Research Council (Canada) Strategic Project grant entitled “Simulation of complex microstructure path way for alloy design” and the computing resources of the Shared Hierarchical Academic Research Computing Network (Sharcnet) of Ontario. We gratefully acknowledge numerous helpful discussions with Dr. Gary Purdy and Dr. Hatem S. Zurob. H. Song acknowledges financial support from a Natural Sciences and Engineering Research Council of Canada postgraduate doctoral Scholarship (NSERC PGS-D). R. Shi and Y. Wang also would like to acknowledge financial support from the National Science Foundation under the DMREF program with Grant No. DMR-1435483.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huajing Song or Rongpei Shi.

Additional information

Manuscript submitted March 31, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, H., Shi, R., Wang, Y. et al. Simulation Study of Heterogeneous Nucleation at Grain Boundaries During the Austenite-Ferrite Phase Transformation: Comparing the Classical Model with the Multi-Phase Field Nudged Elastic Band Method. Metall Mater Trans A 48, 2730–2738 (2017). https://doi.org/10.1007/s11661-016-3711-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3711-4

Keywords

Navigation