Skip to main content
Log in

Three-Dimensional Visualization of the Interaction between Fatigue Crack and Micropores in an Aluminum Alloy Using Synchrotron X-Ray Microtomography

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of the flow-forming process on the fatigue behavior of an Al-Si-Mg alloy was investigated using synchrotron X-ray microtomography. The fatigue life of the flow-formed-T6 specimen was found to be longer than that of the as-cast-T6 in all the selected stress amplitudes. The X-ray-scanned radiographs of a flow-formed-T6 specimen were reconstructed to allow three-dimensional (3-D) visualization of distribution of micropores and pore-crack interactions. Observations were performed on different tomographic slices to investigate the interaction between the micropores and the crack. Micropores have been associated with deflections of the crack path. Mode I and Mode II stress-intensity factors (SIFs) were calculated at each position along the fatigue-crack path using a micromechanics model. The SIF increased rapidly when the fatigue crack came close to a micropore. It was found that the average value of SIFs along entire crack paths was slightly higher than the remotely applied stress intensity, although the level of antishielding was pronounced in some local regions. Crystallographic texture is proposed to be the important factor for the observed higher fatigue resistance in flow-formed-T6 material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Q.G. Wang: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2887–99.

    Article  CAS  Google Scholar 

  2. H. Mayer, M. Papakyriacou, B. Zettl, S.E. Stanzl-Tschegg: Int. J. Fatigue, 2003, vol. 25, pp. 245–56.

    Article  CAS  Google Scholar 

  3. W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood: Mater. Sci. Eng. A, 2000, vol. 280, pp. 37–49.

    Article  Google Scholar 

  4. Q.G. Wang, D. Apelian, D.A. Lados: J. Light Met., 2001, vol. 1, pp. 73–84

    Article  CAS  Google Scholar 

  5. J. Linder, M. Axelsson, H. Nilsson: Int. J. Fatigue, 2006, vol. 28, pp. 1752–58

    Article  CAS  Google Scholar 

  6. P. Groche, D. Fritsche: Int. J. Mach. Tools Manuf., 2006, vol. 46, pp. 1261–65

    Article  Google Scholar 

  7. O. Düber, B. Künkler, U. Krupp, H.J. Christ, C.P. Fritzen: Int. J. Fatigue, 2006, vol. 28, pp. 983–92

    Article  CAS  Google Scholar 

  8. A. Fathulla, B. Weiss, R. Stickler: The Behavior of Short Fatigue Cracks, EFG Pub. 1, K.J. Miller, E.R. de los Rios, eds., Mechanical Engineering Publications, London, 1986, pp. 115–32.

    Google Scholar 

  9. N.A. Fleck, R.A. Smith: Powder Metall., 1981, vol. 3, pp. 121–25

    Google Scholar 

  10. J.M. Hyzak, I.M. Bernstein: Metall. Trans. A, 1982, vol. 13A, pp. 45–52.

    CAS  Google Scholar 

  11. S. Bashir, P. Taupin, S.D. Antolovich: Metall. Trans. A, 1979, vol. 10A, pp. 1481–90

    CAS  Google Scholar 

  12. K.J. Miller: Fatigue Fract. Eng. Mater. Struct., 1982, vol. 5, pp. 223–32

    Article  Google Scholar 

  13. J. Lankford: Fatigue Fract. Eng. Mater. Struct., 1982, vol. 5, pp. 238–48.

    Google Scholar 

  14. S. Suresh, R.O. Ritchie: Int. Met. Rev., 1984, vol. 29, pp. 445–76

    Google Scholar 

  15. K. Shiozawa, Y. Tohda, S.M. Sun: Fatigue Fract. Eng. Mater. Struct., 1997, vol. 20, pp. 237–47.

    Article  CAS  Google Scholar 

  16. M.J. Caton, J.W. Jones, J.E. Allison: Mater. Sci. Eng. A, 2001, vol. A314, pp. 81–85

    CAS  Google Scholar 

  17. F. Heubaum, M.E. Fine: Scripta Mater., 1984, vol. 18, pp. 1235–40.

    Article  Google Scholar 

  18. T. Seeger, P. Heuler: J. Testing Eval., 1980, vol. 8, pp. 199–204

    Article  Google Scholar 

  19. P. DiMascio, R.A. Queeney: Int. J. Powder Metall. Powder Technol., 1983, vol. 19, pp. 127–35

    Google Scholar 

  20. R.D. Pendse, R.O. Ritchie: Metall. Trans. A, 1985, vol.16A, pp. 1491–501

    CAS  Google Scholar 

  21. H. Toda, I. Sinclair, J.-Y. Buffière, E. Maire, K.H. Khor, P. Gregson, T. Kobayashi: Acta Mater., 2003, vol. 52, pp. 1305–17.

    Article  CAS  Google Scholar 

  22. H. Toda, I. Sinclair, J.-Y. Buffière, E. Maire, T. Connolley, M. Joyce, K.H. Khor, P. Gregson: Phil. Mag., 2003, vol. 83, pp. 2429–48

    Article  CAS  Google Scholar 

  23. L. Qian, H. Toda, K. Uesugi, T. Kobayashi, T. Ohgaki, M. Kobayashi: Appl. Phys. Lett., 2005, vol. 87, pp. 241907-1–3

    Article  CAS  Google Scholar 

  24. T. Ohgaki, H. Toda, I. Sinclair, J.-Y. Buffière, W. Ludwig, T. Kobayashi, M. Niinomi, T. Akahori: Mater. Sci. Eng. A, 2006, vol. 427, pp. 1–6

    Article  CAS  Google Scholar 

  25. H. Toda, H. Mizutani, T. Kobayashi, T. Akahori, M. Niinomi: Mater. Trans., 2005, vol. 46, pp. 2229–36

    Article  CAS  Google Scholar 

  26. W. Ludwig, J.-Y. Buffière, S. Savelli, P. Cloetens: Acta Mater., 2003, vol. 51, pp. 585–98

    Article  CAS  Google Scholar 

  27. O. Lame, D. Bellet, M. Di Michiel, D. Bouvard: Acta Mater., 2004, vol. 52, pp. 977–84

    Article  CAS  Google Scholar 

  28. J.-Y. Buffière, S. Savelli, P.H. Jouneau, E. Maire, R. Fougères: Mater. Sci. Eng., 2001, vol. A316, pp. 115–26

    Google Scholar 

  29. H. Toda, T. Ohgaki, K. Uesugi, M. Kobayashi, N. Kuroda, T. Kobayashi, M. Niinomi, T. Akahori, K. Makii, Y. Aruga: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1211–19

    CAS  Google Scholar 

  30. Y.X. Gao, J.Z. Yi, P.D. Lee, T.C. Lindley: Acta Mater. 2004, vol. 52, pp. 5435–49

    Article  CAS  Google Scholar 

  31. J.Z. Yi, Y.X. Gao, P.D. Lee, T.C. Lindley: Mater. Sci. Eng. A, 2004, vol. 386, pp. 396–407

    Article  CAS  Google Scholar 

  32. J.H. Horng, D.S. Jiang, T.S. Lui, L.H. Chen: Int. J. Cast Met. Res., 2000, vol. 13, pp. 215–22.

    CAS  Google Scholar 

  33. K. Gall, N. Yang, M. Horstemeyer, D.L. McDowell, J. Fan: Fatigue Fract. Eng. Mater. Struct., 2000, vol. 23, pp.159–72

    Article  CAS  Google Scholar 

  34. F.T. Lee, J.F. Major, F.H. Samuel: Metall. Mater. Trans. A, 1995, vol. 26, pp. 1553–70.

    Article  Google Scholar 

  35. K. Gall, N. Yang, M. Hostemeyer, D.L. McDowell, J. Fan: Metall. Mater. Trans. A, 1999, vol. 30, pp. 3079–88

    Article  Google Scholar 

  36. D.A. Lados, D. Apelian, J.K. Donald: Acta Mater., 2006, vol. 54, pp. 1475–86

    Article  CAS  Google Scholar 

  37. D.A. Lados, D. Apelian: Mater. Sci. Eng. A, 2004, vol. 385, pp. 200–11

    Google Scholar 

  38. S.W. Kim, S.W. Han, U.J. Lee, K.D. Woo: Mater. Lett., 2003, vol. 58, pp. 257–61.

    Article  CAS  Google Scholar 

  39. K.S. Chan, P. Jones, Q.G. Wang: Mater. Sci. Eng. A, 2003, vol. 341, pp. 18–34

    Article  Google Scholar 

  40. Y. Xu, S.H. Zhang, P. Li, K. Yang, D.B. Shan, Y. Lu: J. Mater. Proc. Technol., 2001, vol. 113, pp. 710–13

    Article  Google Scholar 

  41. M.J. Caton, J.W. Jones, H. Mayer, S. Stanzl-Tschegg, J.E. Allison: Metall. Mater. Trans. A, 2003, vol. 34, pp. 33–41.

    Article  Google Scholar 

  42. M.J. Couper, A.E. Neeson, J.R. Griffith: Fatigue Fract. Eng. Mater. Struct., 1990, vol. 13, pp. 213–27.

    Article  Google Scholar 

  43. A.A. Dabayeh, R.X. Xu, B.P. Du, T.H. Topper: Int. J. Fatigue, 1996, vol. 18, pp. 95–104

    Article  CAS  Google Scholar 

  44. M. Sonsino, J. Ziese: Int. J. Fatigue, 1993, vol. 15, pp. 75–84

    Article  CAS  Google Scholar 

  45. B. Skallerud, T. Iveland, G. Härkegård: Eng. Fract. Mech., 1993, vol. 44, pp. 857–74

    Article  Google Scholar 

  46. K.X. Hu, A. Chandra, Y. Huang: Int. J. Solids Struct., 1993, vol. 30, pp. 1473–89.

    Article  Google Scholar 

  47. A.C.O. Miranda, M.A. Meggiolaro, J.T.P. Castro, L.F. Martha, T.N. Bittencourt: Eng. Fract. Mech., 2003, vol. 70, pp. 1259–79

    Article  Google Scholar 

  48. Z.H. Li, Q. Chen: Int. J. Fract., 2002, vol. 118, pp. 29–40

    Article  Google Scholar 

  49. A.K. Soh, C.H. Yang: Eng. Fract. Mech., 2004, vol. 71, pp. 193–217

    Article  Google Scholar 

  50. T.L. Anderson: Fracture Mechanics: Fundamentals and Applications, 3rd ed., CRC Press, Boca Raton, FL, 2005, pp. 45–48.

    Google Scholar 

  51. F. Erdogan, C.G. Sih: ASME J. Basic. Eng., 1963, vol. 85, pp. 519–27

    Google Scholar 

  52. C. Capdevila, Y.L. Chen, N.C.K. Lassen, A.R. Jones, H.K.D.H. Bhadeshia: Mater. Sci. Technol. 2001, vol. 17, pp. 693–99.

    CAS  Google Scholar 

  53. T. Zhai, X.P. Jiang, J.X. Li, M.D. Garratt, G.H. Bray: Int. J. Fatigue, 2005, vol. 27, pp. 1202–09

    Article  CAS  Google Scholar 

  54. Z. B. Sajuri, Y. Miyashita, Y. Hosokai, Y. Mutoh: Int. J. Mech. Sci., 2006, vol. 48, pp. 198–209

    Article  Google Scholar 

  55. D.L. Chen, M.C. Chaturvedi, N. Goel, N.L. Richards: Int. J. Fatigue, 1999, vol. 21, pp. 1079–86

    Article  CAS  Google Scholar 

  56. R.K. Singh, A.K. Singh, N. Eswara Prasad: Mater. Sci. Eng., 2000, vol. A277, pp. 114–22

    CAS  Google Scholar 

  57. A. Mateo, L. Llanes, N. Akdut, J. Stolarz, M. Anglada: Int. J. Fatigue, 2003, vol. 25, pp. 481–88

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The synchrotron X-ray microtomography experiment was performed at the SPring-8 with the approval of JASRI (Proposal No. 2006A1092). The authors gratefully acknowledge the support by Grant-in-Aid for Scientific Research (Nos. 17360340 and 18-06407) from the Japan Society for the Promotion of Science (JSPS). This work was supported in part by the Tatematsu Foundation and Light Metal Educational Foundation. H. ZHANG acknowledges the support of JSPS through a Postdoctoral Research Fellowship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Zhang.

Additional information

Manuscript submitted October 3, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Toda, H., Hara, H. et al. Three-Dimensional Visualization of the Interaction between Fatigue Crack and Micropores in an Aluminum Alloy Using Synchrotron X-Ray Microtomography. Metall Mater Trans A 38, 1774–1785 (2007). https://doi.org/10.1007/s11661-007-9214-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9214-6

Keywords

Navigation