Skip to main content
Log in

Effect of silicon particles on the fatigue crack growth characteristics of Al-12 Wt Pct Si-0.35 Wt Pct Mg-(0 to 0.02) Wt Pct Sr casting alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Fatigue crack growth (FCG) characteristics and mechanisms in Al-Si-Mg eutectic casting alloys containing 0.35 wt pct Mg and 0 to 0.02 wt pct Sr were investigated as a function of stress ratio,R, stress-intensity-factor range, ΔK, and silicon (Si) particle size. The fatigue crack propagation behavior was compared with that observed in commercial casting alloy A356. At the same applied ΔK level, the crack growth rate was found to increase with increasing stress ratio and Si particle size. Modified (fine Si morphology) and A356 alloys showed better FCG resistance than the unmodified (coarse Si morphology) ones, for a constant applied ΔK, due to increased closure. The effects of roughness-induced and plasticity-induced crack closures, crack branching, and crack meandering on the fatigue crack propagation observed in these alloys have been discussed. The fatigue crack propagation path is found to be dependent on the Si particle characteristics. The mechanisms of silicon particle decohesion and cracking are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.J. McEvily:Met. Sci., 1977, vol. 11, p. 274.

    CAS  Google Scholar 

  2. C.J. Beevers:Met. Sci., 1977, vol. 11, p. 825.

    Article  Google Scholar 

  3. D. Mclntyre:J. Eng. Mater. Technol., 1975, vol. 87, p. 194.

    Google Scholar 

  4. W.W. Gerberich and N.R. Moody:Fatigue Mechanisms, ASTM- STP 675, 1979, p. 292.

  5. D.L. Davidson: inMetal Matrix Composites: Mechanisms and Properties, R.K. Everett and R.J. Arsenault, eds., Academic Press, New York, NY, 1991, p. 217.

    Google Scholar 

  6. J. Gurland and J. Plateau:Trans. ASM, 1963, vol. 56, p. 442.

    CAS  Google Scholar 

  7. P.C. Inguanti:Proc. 17th National SAMPE Technical Conf., Oct. 22-24, 1985, vol. 17, p. 61.

    CAS  Google Scholar 

  8. G.A. Hoskin, J.W. Provan, and J.E. Gruzleski:Theor. Appl. Fract. Mech., 1988, vol. 10, pp. 27–41.

    Article  Google Scholar 

  9. M.J. Couper, A.E. Neeson, and J.R. Griffiths:Fatigue Fract. Eng. Mater. Struct., 1990, vol. 13 (3), p. 213.

    Article  Google Scholar 

  10. D.L. Davidson and J. Lankford:Trans. ASME, 1976, Jan., p. 24. ll.J. Lankford, D.L. Davidson, and T.S. Cook: ASTM STP 637, 1977, p. 36.

  11. M. Klesnil and P. Lukas:Fracture 1969, P.L. Prattet al., eds., Chapman and Hall, London, 1969, p. 725.

    Google Scholar 

  12. C.Q. Bowles and D. Broek: NRL MP 69014V, Aug. 1969.

  13. M.A. Wilkins and G.C. Smith:Acta Metall., 1970, vol. 18, p. 1035.

    Article  CAS  Google Scholar 

  14. T. Yokobori, K. Sato, and Y. Yamaguchi:Rep. Res. Inst. Strength Fract. Mater., Tokoku Univ., Jpn., 1970, vol. 6, p. 49.

    Google Scholar 

  15. D.E. Pettit and D.W. Hoeppner:Eng. Fract. Mech., 1973, vol. 5, p. 923.

    Article  CAS  Google Scholar 

  16. H.W. Liu and N. Lino:Acta Metall., 1970, vol. 18, p. 812.

    Google Scholar 

  17. G.T. Hahn, R.G. Hoagland, and A.R. Rosenfield:Metall. Trans., 1972, vol. 3A, pp. 1189–202.

    Article  Google Scholar 

  18. M. Clavel, D. Fournier, and A. Pineau:Metall. Trans. A, 1975, vol. 6A, pp. 2305–07.

    CAS  Google Scholar 

  19. F.T. Lee, J.F. Major, and F.H. Samuel: Internal Report submitted to Alan International Limited, Kingston R & D Centre, Kingston, ON, June 1993.

    Google Scholar 

  20. K. Tynelius, J.F. Major, and D. Apelian:AFS Trans., 1993, vol. 101, pp. 401–13.

    CAS  Google Scholar 

  21. E. Kato and K. Kobayashi:J. Jpn. Inst. Light Met., 1980, vol. 30, p. 147.

    CAS  Google Scholar 

  22. G.R. Yoder, L.A. Cooley, and T.W. Crooker:Proc. Conf. Fracture Mechanics: 14th Symp. (Volume I: Theory and Analysis), Los Angeles, CA, June 30-July 2, 1981, ASTM STP 791, 1983, pp. 348-65.

  23. A.M. Sullivan and T.W. Crooker:Eng. Fract. Mech., 1977, vol. 9 (1), pp. 159–66.

    Article  Google Scholar 

  24. C.C. Wigant and R.I. Stephens:Fatigue and Fracture Toughness of A356-T6 Cast Aluminum Alloys, R.I. Stephens, ed., Society of Automotive Engineers, Warrendale, PA, 1988, pp. 49–60.

    Google Scholar 

  25. R.O. Ritchie and R.H. Dauskardt:J. Ceram. Soc. Jpn., 1991, vol. 99, p. 1047.

    CAS  Google Scholar 

  26. F.A. McClintock and G.R. Irwin: ASTM STP 381, 1965, p. 84.

  27. T.C. Lindley, G. Oates, and C.E. Richards:Acta Metall., 1970, vol. 18, p. 1127.

    Article  CAS  Google Scholar 

  28. D.A. Curry and J.F. Knott:Met. Sci., 1979, vol. 13, p. 341.

    CAS  Google Scholar 

  29. G.R. Irwin:Trans. AIME, 1960, vol. 82, p. 417.

    Google Scholar 

  30. A.G. Evans, M. Ruhle, and M. Turwitt:J. Phys., 1985, vol. 46, p. 613.

    Google Scholar 

  31. A.S. Argon, J. Im, and A. Needleman:Metall. Trans. A, 1975, vol. 6A, pp. 815–24.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Research Associate, Département des Sciences Appliquées, Université du Québec à Chicoutimi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, F.T., Major, J.F. & Samuel, F.H. Effect of silicon particles on the fatigue crack growth characteristics of Al-12 Wt Pct Si-0.35 Wt Pct Mg-(0 to 0.02) Wt Pct Sr casting alloys. Metall Mater Trans A 26, 1553–1570 (1995). https://doi.org/10.1007/BF02647606

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647606

Keywords

Navigation