Skip to main content
Log in

Characterization of the Carbon and Retained Austenite Distributions in Martensitic Medium Carbon, High Silicon Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The retained austenite content and carbon distribution in martensite were determined as a function of cooling rate and temper temperature in steel that contained 1.31 at. pct C, 3.2 at. pct Si, and 3.2 at. pct noniron metallic elements. Mössbauer spectroscopy, transmission electron microscopy (TEM), transmission synchrotron X-ray diffraction (XRD), and atom probe tomography were used for the microstructural analyses. The retained austenite content was an inverse, linear function of cooling rate between 25 and 560 K/s. The elevated Si content of 3.2 at. pct did not shift the start of austenite decomposition to higher tempering temperatures relative to SAE 4130 steel. The minimum tempering temperature for complete austenite decomposition was significantly higher (>650 °C) than for SAE 4130 steel (∼300 °C). The tempering temperatures for the precipitation of transition carbides and cementite were significantly higher (>400 °C) than for carbon steels (100 °C to 200 °C and 200 °C to 350 °C), respectively. Approximately 90 pct of the carbon atoms were trapped in Cottrell atmospheres in the vicinity of the dislocation cores in dislocation tangles in the martensite matrix after cooling at 560 K/s and aging at 22 °C. The 3.2 at. pct Si content increased the upper temperature limit for stable carbon clusters to above 215 °C. Significant autotempering occurred during cooling at 25 K/s. The proportion of total carbon that segregated to the interlath austenite films decreased from 34 to 8 pct as the cooling rate increased from 25 to 560 K/s. Developing a model for the transfer of carbon from martensite to austenite during quenching should provide a means for calculating the retained austenite. The maximum carbon content in the austenite films was 6 to 7 at. pct, both in specimens cooled at 560 K/s and at 25 K/s. Approximately 6 to 7 at. pct carbon was sufficient to arrest the transformation of austenite to martensite. The chemical potential of carbon is the same in martensite that contains 0.5 to 1.0 at. pct carbon and in austenite that contains 6 to 7 at. pct carbon. There was no segregation of any substitutional elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. PHILIPS is a trademark of Philips Electronic Instruments Corp., Mahwah, NJ.

References

  1. D.H. Sherman, B.J. Yang, A.V. Catalina, A.A. Hattiangadi, P. Zhao, L. Chuzhoy, and M.L. Johnson: Proc. THERMEC’2006, Materials Science Forum/Advanced Materials Research, Trans Tech Publications Inc., Uetikon-Zuerich, Switzerland, 2007, vols. 539–543, pp. 4795–800

  2. M.N. Shabrov, E. Sylven, S. Kim, D.H. Sherman, L. Chuzhoy, C.L. Briant, A. Needleman: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1745–55

    Article  CAS  Google Scholar 

  3. W. Li, J. Cai, L. Chuzhoy, D.H. Sherman, K.L. Erickson, R. Shaikh: Heat Treating: Proc. of the 23rd Heat Treating Society Conf., D.H. Herring, R.A. Hill Jr, ed., ASM International, USA, 2006, pp. 175–81

    Google Scholar 

  4. A.A. Hattiangadi, J. Cai, L. Chuzhoy, M.L. Johnson: Heat Treating: Proc. of the 23rd Heat Treating Society Conf., D.H. Herring, R.A. Hill Jr, ed., ASM International, USA, 2006, pp. 279–88

    Google Scholar 

  5. V. Raghavan: in Martensite, G.B. Olson, W.S. Owen, eds., ASM INTERNATIONAL, Materials Park, OH, 1992, pp. 197–225

    Google Scholar 

  6. I. Tamura: in Martensite, G.B. Olson, W.S. Owen, eds., ASM INTERNATIONAL, Materials Park, OH, 1992, pp. 227–42

    Google Scholar 

  7. G.B. Olson, A.L. Roitburd: in Martensite, G.B. Olson, W.S. Owen, eds., ASM INTERNATIONAL, Materials Park, OH, 1992, pp. 149–74

    Google Scholar 

  8. M. Grujicic, H.C. Ling, D.M. Haezebrouck, W.S. Owen: in Martensite, G.B. Olson, W.S. Owen, eds., ASM INTERNATIONAL, Materials Park, OH, 1992, pp. 175–96

    Google Scholar 

  9. S.S. Babu, K. Hono, T. Sakurai: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 499–508

    Article  CAS  Google Scholar 

  10. M. Sarikaya, G. Thomas, J.W. Steeds, S.J. Barnard, and G.D.W. Smith: Int. Conf. on Solid to Solid Phase Transformations, H.I. Aaronson, ed., TMS, Warrendale, PA, 1982, pp. 1421–25

  11. J.A. McMahon: Lawrence Berkeley Laboratory Report No. 1181, University of California, Berkeley, CA, 1973.

  12. G.R. Speich, K.A. Taylor: in Martensite, G.B. Olson, W.S. Owen, eds., ASM INTERNATIONAL, Materials Park, OH, 1992, pp. 243–75

    Google Scholar 

  13. G. Krauss: STEELS: Heat Treatment and Processing Principles, ASM INTERNATIONAL, Metals Park, OH, 1990, pp. 75–76

    Google Scholar 

  14. K.A. Taylor, M. Cohen: Progr. Mater. Sci., 1992, vol. 36, pp. 225–72

    CAS  Google Scholar 

  15. G. Thomas, M. Sarikaya, G.D.W. Smith, S.J. Barnard: Advances in the Physical Metallurgy and Applications of Steels, TMS, London, 1982, pp. 259–65

    Google Scholar 

  16. R.G. Thomson, M.K. Miller: Acta Mater., 1998, vol. 46 (6), pp. 2203–13

    Article  CAS  Google Scholar 

  17. A.M. Sherman: Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1967

  18. J.A. McMahon and G. Thomas: Proc. Int. Conf. on the Microstructure and Design of Alloys, Institute of Metals, London, 1973, vol. 1, pp. 180–84

  19. R.C. Thomson, M.K. Miller: Scripta Metall. Mater., 1995, vol. 32, pp. 149–54

    Article  CAS  Google Scholar 

  20. B.P.J. Sandvik, C.M. Wayman: Metallography, 1983, vol. 16, pp. 429–47

    Article  CAS  Google Scholar 

  21. K.A. Taylor: Sc.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1985

  22. A.G. Khachaturyan: Theory of Structural Transformations is Solids, John Wiley and Sons, Inc., New York, NY, 1983.

    Google Scholar 

  23. S. Nagakura, M. Toyoshima: Trans. Jpn. Inst. Met., 1979, vol. 20, pp. 100–10

    CAS  Google Scholar 

  24. M. Kusunoki, S. Nagakura: J. Appl. Cryst., 1981, vol. 14, pp. 329–36

    Article  CAS  Google Scholar 

  25. Y. Nakamura, S. Nagakura: Proc. 7th Int. Conf. High Voltage Electron Microscopy, R.M. Fisher, R. Gronsky, K.H. Westmacott, eds., Lawrence Berkeley Laboratory, CA, USA, 1983, pp. 221–26

    Google Scholar 

  26. S. Nagakura, Y. Hirotsu, M. Kusunoki, T. Suzuki, Y. Kakamura: Metall. Trans. A, 1983, vol. 14A, pp. 1025–31

    Google Scholar 

  27. M. Kusunoki, S. Nagakura: Trans. Jpn. Inst. Met., 1984, vol. 25, pp. 517–22

    CAS  Google Scholar 

  28. K.A. Taylor, J.B. Vander Sande, M. Cohen: Metall. Trans. A, 1993, vol. 24A, pp. 2585–88

    CAS  Google Scholar 

  29. S.B. Ren, T. Tadaki, K. Shimizu, X.T. Wang: Metall. Trans. A, 1995, vol. 26A, pp. 2001–05

    Article  CAS  Google Scholar 

  30. W. Xiaotian, R. Ziaobing: Trans. Met. Heat Treat., 1996, vol. 17, pp. 1–6

    Google Scholar 

  31. S.S. Babu, K. Hono, T. Sakurai: Appl. Surf. Sci., 1993, vol. 67, pp. 321–27

    Article  CAS  Google Scholar 

  32. R.C. Thomson, M.K. Miller: Appl. Surf. Sci., 1995, vols. 87–88, pp. 185–93

    Article  Google Scholar 

  33. M. Sarikaya, A.K. Jhingan, G. Thomas: Metall. Trans. A, 1983, vol. 14A, pp. 1121–33

    CAS  Google Scholar 

  34. R.G. Thomson, M.K. Miller: Appl. Surf. Sci., 1996, vols. 94–95, pp. 313–19

    Article  Google Scholar 

  35. H. Kwon, C.H. Kim: Metall. Trans. A, 1983, vol. 14A, pp. 1389–94.

    CAS  Google Scholar 

  36. R.A. Clark, G. Thomas: Metall. Trans. A, 1975, vol. 6A, p. 969

    CAS  Google Scholar 

  37. N.C. Law, P.R. Howell, D.V. Edmonds: Met. Sci., 1979, vol. 13, p. 507

    Article  CAS  Google Scholar 

  38. R.M. Horn RM, R.O. Ritchie: Metall. Trans. A, 1978, vol. 9A, p. 1039–53

    CAS  Google Scholar 

  39. C.J. Barton: Acta Metall., 1969, vol. 17, pp. 1085–93

    Article  CAS  Google Scholar 

  40. A. Böttger, P.J. Warren, G.D.W. Smith, M.J. van Genderen, S.J. Sijbrandij, E.J. Mittemeijer: Mater. Sci. Forum, 1999, vols. 318–320, pp. 103–08

    Article  Google Scholar 

  41. M.K. Miller, P.A. Beaven, G.D.W. Smith: Metall. Trans. A, 1981, vol. 12A, pp. 1187–204

    Google Scholar 

  42. R. Padmanabhan, W.E. Wood: Mater. Sci. Eng., 1984, vol. 65, pp. 289–97

    Article  CAS  Google Scholar 

  43. S.J. Barnard, G.D.W. Smith, M. Sarikaya, G. Thomas: Scripta Metall., 1981, vol. 15, pp. 387–92

    Article  CAS  Google Scholar 

  44. A.M. Sherman, G.T. Eldis, M. Cohen: Metall. Trans. A, 1983, vol. 14A, pp. 995–1005.

    Google Scholar 

  45. K.A. Taylor, L. Chang, G.B. Olson, G.D.W. Smith, M. Cohen, J.B. Vander Sand: Metall. Trans. A, 1989, vol. 20A, pp. 2717–37

    CAS  Google Scholar 

  46. H.K.D.H. Bhadeshia, D.V. Edmonds: Met. Sci., 1979, vol. 13, p. 325

    CAS  Google Scholar 

  47. C.L. Briant: Mater. Sci. Technol., 1989, vol. 5, p. 138

    CAS  Google Scholar 

  48. G. Thomas: Metall. Trans. A, 1978, vol. 9A, p. 439

    CAS  Google Scholar 

  49. M. Sarikaya, Steinberg G. Thomas: Metall. Trans. A, 1982, vol. 13A, pp. 2227–37

    Google Scholar 

  50. A.G. Allten P. Payson: Trans. ASM, 1953, vol. 45, pp. 498–532

    Google Scholar 

  51. C.H. Shih B.L. Averbach, Morris Cohen: Trans. ASM, 1956, vol. 48, pp. 86–118

    Google Scholar 

  52. C.J. Altstetter, M. Cohen, B.L. Averbach: Trans. ASM, 1962, vol. 55, pp. 287–300

    CAS  Google Scholar 

  53. T.F. Kelly, P.P. Camus, D.J. Larson, L.M. Holzman, S.S. Bajikar: Ultramicroscopy, 1996, vol. 62, pp. 29–42

    Article  CAS  Google Scholar 

  54. T.F. Kelly, D.J. Larson: Mater. Charact., 2000, vol. 44, pp. 59–85

    Article  CAS  Google Scholar 

  55. D.L. Williamson, R.G. Schupmann, J.P. Materkowski, G. Krauss: Metall. Trans. A, 1979, vol. 10A, pp. 379–82.

    CAS  Google Scholar 

  56. J. Hesse: Nukleonika, 1994, vol. 39, pp. 69–90

    CAS  Google Scholar 

  57. K.F. Laneri, J. Desimoni, G.J. Zarragoicoechea, A. Fernandez-Guillermet: Phys. Rev. B, 2002, vol. 66, p. 134201

    Article  CAS  Google Scholar 

  58. J. Desimoni: Hyperfine Int., 2001, vol. 134, pp. 93–102

    Article  CAS  Google Scholar 

  59. J.A. Peters, J.V. Bee, B. Kolk, G.G. Garrett: Acta Metall., 1989, vol. 37, pp. 675–86

    Article  CAS  Google Scholar 

  60. PowderDiffraction Files, The International Center for Diffraction Data, Newton Square, PA

  61. B.W. Christ, P.M. Giles: Trans. TMS-AIME, 1968, vol. 242, pp. 1915–25

    Google Scholar 

  62. B. Fultz: in Mössbauer Spectroscopy Applied to Magnetism and Materials Science,” G.J. Long and F. Grandjean, eds., Plenum Press, New York, NY, 1996, vol. 2, pp. 1–31

  63. N. Abe, L.H. Schwartz: Mater. Sci. Eng., 1974, vol. 14, pp. 239–51

    Article  CAS  Google Scholar 

  64. G. Krauss: STEELS: Processing, Structure, and Performance, ASM INTERNATIONAL, Metals Park, OH, 2005, pp. 327–52

    Google Scholar 

  65. G. Krauss: STEELS: Processing, Structure, and Performance, ASM INTERNATIONAL, Metals Park, OH, 2005, p. 397

    Google Scholar 

  66. R.K.W. Honeycombe, H.K.D.H. Bhadeshia: Steels, Microstructure and Properties, Edward Arnold, London, 1995

    Google Scholar 

  67. G. Krauss: Proc. Int. Conf. on Phase Transformations in Ferrous Alloys, TMS, Warrendale, PA, 1984, pp. 101–23

    Google Scholar 

  68. H.C. Lee and G. Krauss: Gilbert R. Speich Symp. Proc.: Fundamentals of Aging and Tempering in Bainitic and Martensitic Steel Products, ISS, Warrendale, PA, 1992, pp. 39–43

    Google Scholar 

  69. W.S. Owen: Trans. ASM, 1954, vol. 46, pp. 813–29

    Google Scholar 

  70. L. Chang, G.D.W. Smith: J. Phys., 1984, vol. 45 (C9), pp. 397–401

    Google Scholar 

  71. G.M. Michal, J.A. Slane: Metall. Trans. A, 1986, vol. 17A, pp. 1287–94

    CAS  Google Scholar 

  72. G.M. Michal and J.A. Slane: J. Met., 1986, Jan., pp. 32–36

  73. B.G. Reisdorf: Trans. TMS-AIME, 1963, vol. 227, pp. 1334–41

    CAS  Google Scholar 

  74. J. Gordine and I. Codd: J. Iron Steel Inst., 1969, Apr., pp. 461–67

  75. G. Le Caër, J.M. Dubois J.P. Senateur: J. Solid State Chem., 1976, vol. 19, pp. 19–28

    Article  Google Scholar 

  76. G. Le Caër, E. Bauer-Grosse: Hyperfine Interactions, 1989, vol. 47, pp. 55–67

    Article  Google Scholar 

  77. J. Wilde, A. Cerezo, G.D.W. Smith, Scripta Mater., 2000, vol. 43, pp. 39–48

    Article  CAS  Google Scholar 

  78. F.G. Cabellero, M.K. Miller, S.S. Babu, C. Garcia-Mateo, and C. Garcia de Andrés: Solid-Solid Phase Transformations in Inorganic Materials 2005 Volume 1: Diffusional Transformations, J. Howe, D. Laughlin, J. Lee, U. Dahmen, and W. Soffa, TMS, Warrendale, PA, 2005, pp. 511–16

  79. A.W. Cochardt, G. Schoek, H. Wiedersich: Acta Mater, 1955, vol. 3, pp. 533–37

    Article  CAS  Google Scholar 

  80. M.K. Miller, P.A. Beaven, S.S. Brenner, G.D.W. Smith: Metall. Trans. A, 1983, vol. 14A, p. 1021

    Google Scholar 

Download references

Acknowledgments

The authors thank Drs. R.P. Hermann and C. Piquer and Ms. L. Rebbouh, for help in obtaining the Mössbauer spectra, and Professor C.L. Briant, the late Professor H.P. Leighly, Dr. P. Zhao, and Mr. D. Akers, for many helpful discussions over the years. One of the authors (FG) acknowledges the “Fonds National de la Recherche Scientifique,” for Grant No. 9.456595. Research with the local electrode atom probe at the ShaRE user facility at Oak Ridge National Laboratory was sponsored by the Division of Materials Sciences and Engineering, United States Department of Energy, under Contract No. DE-AC05-00OR22725, with UT—Battelle, LLC. Transmission synchrotron X-ray diffraction was done at Argonne National Laboratory under General User Proposal 2679 on the Sector 1 Insertion Device beamline at the Advanced Photon Source. The use of the Advanced Photon Source was supported by the United States Department of Energy, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38. Support for the TEM work was from the Materials Research Science and Engineering Center on Micro- and Nano-Mechanics of Electronic and Structural Materials, Brown University (NSF Grant No. DMR-0079964). Finally, the authors acknowledge the support for this work from Caterpillar Inc. and the Department of Energy, Office of Heavy Vehicle and Transportation Applications, WR10648, Program Manager–Sid Diamond (late).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald H. Sherman.

Additional information

Manuscript submitted October 2, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sherman, D., Cross, S., Kim, S. et al. Characterization of the Carbon and Retained Austenite Distributions in Martensitic Medium Carbon, High Silicon Steel. Metall Mater Trans A 38, 1698–1711 (2007). https://doi.org/10.1007/s11661-007-9160-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9160-3

Keywords

Navigation