Skip to main content
Log in

Atom probe field ion microscopy study of the partitioning of substitutional elements during tempering of a low-alloy steel martensite

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The partitioning behavior of Mn and Si at the cementite/ferrite interface during tempering of Fe-C-Si-Mn steel martensite has been studied by atom probe field-ion microscopy (APFIM). It has been shown that cementite can form without partitioning of Si and Mn during the early tempering stage at a low temperature. The atom probe compositional analysis shows no evidence of segregation or of concentration spikes of substitutional elements at the interface. This suggests that the early stage of cementite growth occurs by paraequilibrium mode and is controlled only by C diffusion in the matrix. In addition, significant C concentration fluctuations are measured in the as-quenched condition. The onset of partitioning of both Si and Mn occurs after prolonged time or by increasing the tempering temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Hillert:Internal Report, Swedish Institute of Metal Research, Stockholm, 1953.

    Google Scholar 

  2. J.S. Kirkaldy:Can. J. Phys., 1958, vol. 36, pp. 899–925.

    CAS  Google Scholar 

  3. G.R. Purdy, D.H. Weichert, and J.S. Kirkaldy:Trans. TMS-AIME, 1964, vol. 230, pp. 1025–34.

    CAS  Google Scholar 

  4. D.E. Coates:Metall. Trans., 1972, vol. 3, pp. 1203–12.

    Article  CAS  Google Scholar 

  5. D.E. Coates:Metall. Trans., 1973, vol. 4, pp. 1077–86.

    CAS  Google Scholar 

  6. D.E. Coates:Metall. Trans., 1973, vol. 4, pp. 2313–25.

    CAS  Google Scholar 

  7. A. Hultgren:Jernkontorets Ann., 1951, vol. 135, p. 403.

    Google Scholar 

  8. H.K.D.H. Bhadeshia:Prog. Mater. Sci., 1985, vol. 29, pp. 321–86.

    Article  CAS  Google Scholar 

  9. J.B. Gilmour, G.R. Purdy, and J.S. Kirkaldy:Metall. Trans., 1972, vol. 3, pp. 3213–22.

    Article  CAS  Google Scholar 

  10. M. Enomoto and H.I. Aaronson:Metall. Trans. A, 1987, vol. 18A, pp. 1547–57.

    CAS  Google Scholar 

  11. H.K.D.H. Bhadeshia:J. Phys. Colloq., 1989, vol. 50, pp. 389–94.

    Article  Google Scholar 

  12. MTDATA, Metallurgical and Inorganic Thermodynamic Bank, National Physical Laboratory, Teddington, United Kingdom, 1989.

  13. J. Kucera and Karel Stransky:Mater. Sci. Eng., 1982, vol. 52, pp. 1–38.

    Article  CAS  Google Scholar 

  14. J. Fridberg, L.E. Torndahl, and M. Hillert,Jernkontorets Ann., 1969, vol. 153, pp. 263–76.

    CAS  Google Scholar 

  15. H.K.D.H. Bhadeshia and D.V. Edmonds:Mater. Sci., 1979, vol. 13, pp. 325–34.

    CAS  Google Scholar 

  16. K. Hono, T. Hashizume, and T. Sakurai:Surf. Sci., 1992, vol. 266, pp. 506–12.

    Article  CAS  Google Scholar 

  17. M.K. Miller and G.D.W. Smith:Atom Probe Microanalysis: Principles and Applications to Materials Problems, Materials Research Society Pittsburgh, PA, 1989.

    Google Scholar 

  18. Y. Ohmori:Mater. Trans. J. Inst. Met., 1989, vol. 30, pp. 487–97.

    CAS  Google Scholar 

  19. Y. Ohmori and I. Tamura:Metall. Trans. A, 1992, vol. 23A, pp. 2737–51.

    CAS  Google Scholar 

  20. M.K. Miller, P.A. Beaven, S.S. Brenner, and G.D.W Smith:Metall. Trans. A, 1983, vol. 14A, pp. 1021–24.

    Google Scholar 

  21. W. Sha and G.D.W. Smith:Surf. Sci., 1992, vol. 266, pp. 416–23.

    Article  CAS  Google Scholar 

  22. K.A. Taylor, L. Chang, G.B. Olson, G.D.W. Smith, M. Cohen, and J.B. Vander Sande:Metall. Trans. A, 1989, vol. 20A, pp. 2717–37.

    CAS  Google Scholar 

  23. K.A. Taylor, G.B. Olson, M. Cohen, and J.B. Vander Sande:Metall. Trans. A, 1989, vol. 20A, pp. 2749–65.

    CAS  Google Scholar 

  24. L. Chang and G.D.W. Smith:J. Phys., 1984, vol. 45, pp. 397–401.

    Google Scholar 

  25. A.M. Sherman, G.T. Eldis, and M. Cohen:Metall. Trans. A, 1983, vol. 14A, pp. 995–1005.

    Google Scholar 

  26. K.A. Andrews:Acta Metall., 1963, vol. 11, pp. 939–46.

    Article  CAS  Google Scholar 

  27. B.P.J. Sandvik:Metall. Trans. A, 1982, vol. 13A, pp. 789–800.

    Google Scholar 

  28. Y. Ohmori and I. Tamura:Metall. Trans. A, 1992, vol. 23A, pp. 2147–58.

    CAS  Google Scholar 

  29. S.J. Barnard, G.D.W. Smith, A.J. Garret-Reed, and J. Vander Sande:Proc. Intl. Conf. on Solid-Solid Phase Transformations, H.I. Aaronson, D.E. Laughlin, R.F. Sekerka, and C.M. Wayman, eds., TMS-AIME, Warrendale, PA, 1981, pp. 881–85.

    Google Scholar 

  30. W. Hume-Rothery and G. V. Raynor:The Structure of Metals and Alloys, Monograph and Report Series, Institute of Metals, London, 1956, vol. 1, p. 270.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Research Associate, Institute for Materials Research, Tohoku University

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babu, S.S., Hono, K. & Sakurai, T. Atom probe field ion microscopy study of the partitioning of substitutional elements during tempering of a low-alloy steel martensite. Metall Mater Trans A 25, 499–508 (1994). https://doi.org/10.1007/BF02651591

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02651591

Keywords

Navigation