Skip to main content
Log in

Spark plasma sintering of a nanocrystalline Al-Cu-Mg-Fe-Ni-Sc alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The microstructure and aging behavior of a nanocrystalline Al-Cu-Mg-Fe-Ni-Sc alloy was studied. The nanocrystalline powders were produced by milling at liquid nitrogen temperature and then consolidated using spark plasma sintering (SPS). The microstructure after SPS consisted of a bimodal aluminum grain structure (coarse-grained and fine-grained regions), along with Al9FeNi and Al2CuMg particles dispersed throughout. The microstructure observed in the as-consolidated sample is rationalized on the basis of high current densities that are generated during sintering. Solution treatment and aging of the SPS Al-Cu-Mg-Fe-Ni-Sc sample resulted in softening instead of hardening. This observation can be explained by the reduced amount of Cu, Mg, and Si in solid solution available to form S′ Al2CuMg due to the precipitation of Al7FeCu2 and Si-rich particles, and by the fact that rodlike S′ Al2CuMg particles could only precipitate out in the coarse-grained regions, greatly decreasing their influence on the hardness. This lack of precipitation in the fine-grained region is argued to represent a new physical observation and is rationalized on the basis of physical and thermodynamic effects. The nanocrystalline SPS Al-Cu-Mg-Fe-Ni-Sc sample was also extremely thermally stable, retaining a fine-grained structure even after solution treatment at 530°C for 5 h. The observed thermal stability is rationalized on the basis of solute drag and Zener pinning caused by the impurities introduced during the cryomilling process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.A. Belov, A.A. Akesnov, and D.G. Eskin: Iron in Aluminum Alloys, Taylor & Francis, New York, NY, 2002, pp. 1–99.

    Google Scholar 

  2. I.J. Polmear: Mater. Trans., JIM, 1996, vol. 37, pp. 12–31.

    CAS  Google Scholar 

  3. V. Gerold: Scripta Metall., 1988, vol. 22, pp. 927–32.

    Article  CAS  Google Scholar 

  4. P.G. Shewmon: Transformations in Metals, McGraw-Hill, New York, NY, 1969, p. 315.

    Google Scholar 

  5. I.J. Polmear and M.J. Couper: Metall. Trans. A, 1988, vol. 19A, pp. 1027–35.

    CAS  Google Scholar 

  6. A. Roósz and H.E. Exner: Acta Metall. Mater., 1990, vol. 38, pp. 2009–16.

    Article  Google Scholar 

  7. I.N.A. Oguocha and S. Yannacopoulos: Mater. Sci. Eng., 1997, vol. A231, pp. 25–33.

    CAS  Google Scholar 

  8. J. Majimel, G. Molénat, M.J. Casanove, D. Schuster, A. Denquin, and G. Lapasset: Scripta Mater., 2002, vol. 46, pp. 113–19.

    Article  CAS  Google Scholar 

  9. L.S. Toropova, D.G. Eskin, M.L. Kharakterova, and T.V. Dobatkina: Advanced Aluminum Alloys Containing Scandium, Gordon and Breach, Amsterdam, 1998, p. 21.

    Google Scholar 

  10. D.N. Seidman, E.A. Marquis, and D.C. Dunand: Acta Mater., 2002, vol. 50, pp. 4021–35.

    Article  CAS  Google Scholar 

  11. G.M. Novotny and A.J. Ardell: Mater. Sci. Eng., 2001, vol. A318, pp. 144–54.

    CAS  Google Scholar 

  12. E.A. Marquis and D.N. Seidman: Acta Mater., 2001, vol. 49, pp. 1909–19.

    Article  CAS  Google Scholar 

  13. C.C. Koch: Ann. Rev. Mater. Sci., 2003, vol. 5, pp. 91–99.

    CAS  Google Scholar 

  14. E. Gaffet, N. Malhouroux, and M. Abdellaoui: J. Alloys Compounds, 1993, vol. 194, pp. 339–60.

    Article  CAS  Google Scholar 

  15. C. Suryanarayana: Int. Mater. Rev., 1995, vol. 40, pp. 41–64.

    CAS  Google Scholar 

  16. D.B. Witkin and E.J. Lavernia: Progr. Mater. Sci., 2006, vol. 51, pp. 1–60.

    Article  CAS  Google Scholar 

  17. C.C. Koch: Nanostruct. Mater., 1993, vol. 2, pp. 109–29.

    Article  CAS  Google Scholar 

  18. B.J.M. Aikin, T.H. Courtney, and D.R. Mauri: Mater. Sci. Eng., 1991, vol. A147, pp. 229–37.

    CAS  Google Scholar 

  19. F. Zhou, R. Luck, K. Lu, E.J. Lavernia, and M. Ruhle: Phil. Mag. A, 2002, vol. 82, pp. 1003–15.

    Article  CAS  Google Scholar 

  20. C. Suryanarayana: Progr. Mater. Sci., 2001, vol. 46, pp. 1–184.

    Article  CAS  Google Scholar 

  21. J. Eckert, J.C. Holzer, C.E. Kill, III, and W.L. Johnson: J. Mater. Res., 1992, vol. 7, pp. 1751–61.

    CAS  Google Scholar 

  22. D. Oleszak and P.H. Shingu: J. Appl. Phys., 1996, vol. 79, pp. 2975–80.

    Article  CAS  Google Scholar 

  23. C.C. Koch: Nanostr. Mater., 1997, vol. 9, pp. 13–22.

    Article  CAS  Google Scholar 

  24. F.A. Mohamed and Y. Xun: Mater. Sci. Eng., 2003, vol. A354, pp. 133–39.

    CAS  Google Scholar 

  25. M.J. Luton, C.S. Jayanth, M.M. Disko, S. Matras, and J. Vallone: Mater. Res. Soc. Symp. Proc., 1989, vol. 132, pp. 79–86.

    Google Scholar 

  26. B. Huang, J. Vallone, and M.J. Luton: Nanostr. Mater., 1995, vol. 5, pp. 631–42.

    Article  CAS  Google Scholar 

  27. R.J. Perez, B. Huang, and E.J. Lavernia: Nanostr. Mater., 1996, vol. 7, pp. 565–72.

    Article  CAS  Google Scholar 

  28. J.C. Rawers, R.D. Govier, and G. Korth: Mater. Sci. Forum, 1995, vols. 179–181, pp. 363–68.

    Article  Google Scholar 

  29. F. Zhou, J. Lee, S. Dallek, and E.J. Lavernia: J. Mater. Res., 2001, vol. 16, pp. 3451–58.

    CAS  Google Scholar 

  30. F. Zhou, R. Rodriguez, and E.J. Lavernia: Mater. Sci. Forum, 2002, vol. 386–388, pp. 409–14.

    Google Scholar 

  31. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Progr. Mater. Sci., 2000, vol. 45, pp. 103–89.

    Article  CAS  Google Scholar 

  32. X.K. Sun, H.T. Cong, M. Sun, and M.C. Yang: Metall. Trans. A, 2000, vol. 31A, pp. 1017–24.

    CAS  Google Scholar 

  33. V.L. Tellkamp, A. Melmed, and E.J. Lavernia: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2335–43.

    Article  CAS  Google Scholar 

  34. R.W. Hayes, R. Rodriguez, and E.J. Lavernia: Acta Mater., 2001, vol. 49, pp. 4055–68.

    Article  CAS  Google Scholar 

  35. M. Omori: Mater. Sci. Eng., 2000, vol. A287, pp. 183–88.

    CAS  Google Scholar 

  36. M. Tokita: Mater. Sci. Forum, 1999, vols. 308–311, pp. 83–89.

    Google Scholar 

  37. J.R. Groza: Metals Handbook, vol. 7, Field Activated Sintering, Powder Metallurgy, ASM, Metals Park, OH, 1998, p. 583.

    Google Scholar 

  38. J. Schneider, M. Garcia, and J.R. Groza: J. Mater. Res., 2001, vol. 16, pp. 286–92.

    Article  Google Scholar 

  39. W. Chen, U. Anselmi-Tamburini, J.E. Garay, J.R. Groza, and Z.A. Munir: Mater. Sci. Eng., 2005, vol. A394, pp. 132–38.

    CAS  Google Scholar 

  40. X. Li and B. Bhushan: Mater. Characterization, 2002, vol. 48, pp. 11–36.

    Article  CAS  Google Scholar 

  41. E.J. Lavernia and Y. Wu: Spray Atomization and Deposition, John Wiley & Sons, Chichester, United Kingdom, 1996, p. 10.

    Google Scholar 

  42. R. Trivedi, F. Jin, and I.E. Anderson: Acta Mater., 2003, vol. 51, pp. 289–300.

    Article  CAS  Google Scholar 

  43. J.S. Benjamin and T.E. Volin: Metall. Trans., 1974, vol. 5, pp. 1929–34.

    Article  CAS  Google Scholar 

  44. F. Zhou, X.Z. Liao, Y.T. Zhu, S. Dallek, and E.J. Lavernia: Acta Mater., 2003, vol. 51, pp. 2777–91.

    CAS  Google Scholar 

  45. A. Zúñiga: University of California, Davis, unpublished research, 2005.

  46. H.J. Fetch: Nanostr. Mater., 1995, vol. 6, pp. 33–42.

    Article  Google Scholar 

  47. T.G. Nieh and J. Wadsworth: Scripta Metall. Mater., 1991, vol. 25, pp. 955–58.

    Article  CAS  Google Scholar 

  48. F.A. Mohamed: Acta Mater., 2003, vol. 51, pp. 4107–19.

    Article  CAS  Google Scholar 

  49. P.J. Apps, J.R. Bowen, and P.B. Prangnell: Acta Mater., 2003, vol. 51, pp. 2811–22.

    CAS  Google Scholar 

  50. M. Kato, T. Fujii, and S. Onaka: Mater. Sci. Eng., 2001, vol. A317, pp. 108–14.

    Google Scholar 

  51. V. Yamakov, D. Wolf, S.R. Phillpot, and H. Gleiter: Acta Mater., 2002, vol. 50, pp. 5005–20.

    Article  CAS  Google Scholar 

  52. X.Z. Liao, F. Zhou, E.J. Lavernia, S.G. Srinivasan, M.I. Baskes, D.W. He, and Y.T Zhu: Appl. Phys. Lett., 2003, vol. 83, pp. 632–34.

    Article  CAS  Google Scholar 

  53. A. Frøseth, H. Van Swygenhoven, and P.M. Derlet: Acta Mater., 2004, vol. 52, pp. 2259–68.

    Article  CAS  Google Scholar 

  54. H. Conrad: Mater. Sci. Eng., 2000, vol. A287, pp. 227–37.

    CAS  Google Scholar 

  55. D.J. Chakrabarti and D.E. Laugh lin: Progr. Mater. Sci., 2004, vol. 49, pp. 389–410.

    Article  CAS  Google Scholar 

  56. A.K. Gupta, A.K. Jena, and M.C. Chaturvedi: Mater. Sci. Technol., 1987, vol. 3, pp. 1012–18.

    CAS  Google Scholar 

  57. B. Huang, R.J. Perez, and E.J. Lavernia: Mater. Sci. Eng., 1988, vol. A255, pp. 124–32.

    Google Scholar 

  58. R.Z. Valiev, C. Song, S.X. McFadden, A.K. Mukherjee, and R.S. Mishra: Phil. Mag. A, 2001, vol. 81, pp. 25–36.

    Article  CAS  Google Scholar 

  59. J.D. Boyd and R.B. Nicholson: Acta Metall., 1971, vol. 19, pp. 1379–91.

    Article  CAS  Google Scholar 

  60. P. Merle and F. Fouquet: Acta Metall., 1981, vol. 29, pp. 1919–27.

    Article  CAS  Google Scholar 

  61. W. Tirry and D. Schryvers: Acta Mater., 2005, vol. 53, pp. 1041–49.

    Article  CAS  Google Scholar 

  62. S.P. Ringer, T. Sakurai, and I.J. Polmear: Acta Mater., 1997, vol. 45, pp. 3731–44.

    Article  CAS  Google Scholar 

  63. A. Garg, Y.C. Chang, and J.M. Howe: Scripta Metall. Mater., 1990, vol. 24, pp. 677–80.

    Article  CAS  Google Scholar 

  64. S. Abis, P. Mengucci, and G. Riontino: Phil. Mag. A, 1994, vol. 70, pp. 851–68.

    Article  CAS  Google Scholar 

  65. K. Raviprasad, C.R. Hutchinson, T. Sakurai, and S.P. Ringer: Acta Mater., 2003, vol. 51, pp. 5037–50.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zúñiga, A., Ajdelsztajn, L. & Lavernia, E.J. Spark plasma sintering of a nanocrystalline Al-Cu-Mg-Fe-Ni-Sc alloy. Metall Mater Trans A 37, 1343–1352 (2006). https://doi.org/10.1007/s11661-006-1086-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-1086-7

Keywords

Navigation