Skip to main content
Log in

Evolution of phase constitution with mechanical alloying and spark plasma sintering of nanocrystalline AlxCoCrFeNi (x = 0, 0.3, 0.6, 1 mol) high-entropy alloys

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanocrystalline AlxCoCrFeNi (x = 0, 0.3, 0.6, 1 mol) high-entropy alloys were synthesized by mechanical alloying (MA) and consolidated by spark plasma sintering (SPS). Single-phase face-centered cubic (FCC) structure was achieved with x = 0 and 0.3. Dual-phase body-centered cubic (BCC)/B2 + FCC structure was obtained in x = 0.6 and 1. Complete solid solution was achieved with a significantly reduced duration of MA (10 h) followed by a brief SPS leading to crystallite size of < 10 nm for MA powders and < 60 nm post-SPS. Incremental changes in Al content translate into increase of BCC + B2 phase fraction and alter the co-existing FCC phase composition consequently. Ni dominates FCC phase of CoCrFeNi and Al0.3CoCrFeNi, whereas Fe dominates FCC phase of Al0.6CoCrFeNi and AlCoCrFeNi. Carbon and Oxygen addition during milling process resulted in nanoscale dispersion of Cr7C3 carbide and Cr2O3 /Al2O3 post-SPS. The hardness of AlCoCrFeNi (730HV0.3) was the highest among all MA-SPS alloys.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Availability of data and material

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

Code availability

Not applicable.

References

  1. B. Murty, J.-W. Yeh, S. Ranganathan, High-Entropy Alloys (Butterworth-Heinemann, Oxford, 2014)

    Google Scholar 

  2. J. Pang, H. Zhang, L. Zhang, Z. Zhu, H. Fu, H. Li, A. Wang, Z. Li, H. Zhang, Ductile Ti1.5ZrNbAl0.3 refractory high entropy alloy with high specific strength. Mater. Lett. (2021). https://doi.org/10.1016/j.matlet.2021.129428

    Article  Google Scholar 

  3. C. Lee, Y. Chou, G. Kim, M.C. Gao, K. An, J. Brechtl, C. Zhang, W. Chen, J.D. Poplawsky, G. Song, Y. Ren, Y.C. Chou, P.K. Liaw, Lattice-distortion-enhanced yield strength in a refractory high-entropy alloy. Adv Mater 32(49), e2004029 (2020)

    Article  Google Scholar 

  4. W.-R. Wang, W.-L. Wang, S.-C. Wang, Y.-C. Tsai, C.-H. Lai, J.-W. Yeh, Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics 26, 44–51 (2012)

    Article  Google Scholar 

  5. T. Yang, S. Xia, S. Liu, C. Wang, S. Liu, Y. Zhang, J. Xue, S. Yan, Y. Wang, Effects of AL addition on microstructure and mechanical properties of AlxCoCrFeNi High-entropy alloy. Mater. Sci. Eng. A 648, 15–22 (2015)

    Article  CAS  Google Scholar 

  6. A. Zhang, J. Han, J. Meng, B. Su, P. Li, Rapid preparation of AlCoCrFeNi high entropy alloy by spark plasma sintering from elemental powder mixture. Mater. Lett. 181, 82–85 (2016)

    Article  CAS  Google Scholar 

  7. B.S. Murty, S. Ranganathan, Novel materials synthesis by mechanical alloying/milling. Int. Mater. Rev. 43(3), 101–141 (1998)

    Article  CAS  Google Scholar 

  8. S. Varalakshmi, M. Kamaraj, B.S. Murty, Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying. J. Alloys Compd. 460(1), 253–257 (2008)

    Article  CAS  Google Scholar 

  9. W. Ji, Z. Fu, W. Wang, H. Wang, J. Zhang, Y. Wang, F. Zhang, Mechanical alloying synthesis and spark plasma sintering consolidation of CoCrFeNiAl high-entropy alloy. J. Alloys Compd. 589, 61–66 (2014)

    Article  CAS  Google Scholar 

  10. Z. Fu, W. Chen, H. Wen, Z. Chen, E.J. Lavernia, Effects of Co and sintering method on microstructure and mechanical behavior of a high-entropy Al0.6NiFeCrCo alloy prepared by powder metallurgy. J. Alloys Compd. 646, 175–182 (2015)

    Article  CAS  Google Scholar 

  11. C. Zhao, J. Li, Y. Liu, W.Y. Wang, H. Kou, E. Beaugnon, J. Wang, Tailoring mechanical and magnetic properties of AlCoCrFeNi high-entropy alloy via phase transformation. J. Mater. Sci. Technol. 73, 83–90 (2021)

    Article  Google Scholar 

  12. C. Zhao, J. Li, Y. Liu, X. Ma, Y. Jin, W.Y. Wang, H. Kou, J. Wang, Optimizing mechanical and magnetic properties of AlCoCrFeNi high-entropy alloy via FCC to BCC phase transformation. J. Mater. Sci. Technol. 86, 117–126 (2021)

    Article  Google Scholar 

  13. A. Parakh, M. Vaidya, N. Kumar, R. Chetty, B.S. Murty, Effect of crystal structure and grain size on corrosion properties of AlCoCrFeNi high entropy alloy. J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2020.158056

    Article  Google Scholar 

  14. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1–93 (2014)

    Article  Google Scholar 

  15. S. Mohanty, T.N. Maity, S. Mukhopadhyay, S. Sarkar, N.P. Gurao, S. Bhowmick, K. Biswas, Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: microstructure and mechanical properties. Mater. Sci. Eng., A 679, 299–313 (2017)

    Article  CAS  Google Scholar 

  16. V. Shivam, J. Basu, V.K. Pandey, Y. Shadangi, N.K. Mukhopadhyay, Alloying behaviour, thermal stability and phase evolution in quinary AlCoCrFeNi high entropy alloy. Adv. Powder Technol. 29(9), 2221–2230 (2018)

    Article  CAS  Google Scholar 

  17. V. Shivam, Y. Shadangi, J. Basu, N.K. Mukhopadhyay, Evolution of phases, hardness and magnetic properties of AlCoCrFeNi high entropy alloy processed by mechanical alloying. J. Alloys Compd. 832, 154826 (2020)

    Article  CAS  Google Scholar 

  18. Z. Chen, W. Chen, B. Wu, X. Cao, L. Liu, Z. Fu, Effects of Co and Ti on microstructure and mechanical behavior of Al0.75FeNiCrCo high entropy alloy prepared by mechanical alloying and spark plasma sintering. Mater. Sci. Eng. A 648, 217–224 (2015)

    Article  CAS  Google Scholar 

  19. R. Jayasree, R.B. Mane, R. Vijay, D. Chakravarty, Effect of process control agents on mechanically alloyed Al0.3CoCrFeNi. Mater. Lett. (2021). https://doi.org/10.1016/j.matlet.2021.129618

    Article  Google Scholar 

  20. S. Praveen, J. Basu, S. Kashyap, R.S. Kottada, Exceptional resistance to grain growth in nanocrystalline CoCrFeNi high entropy alloy at high homologous temperatures. J. Alloys Compd. 662, 361–367 (2016)

    Article  CAS  Google Scholar 

  21. I. Moravcik, A. Kubicek, L. Moravcikova-Gouvea, O. Adam, V. Kana, V. Pouchly, A. Zadera, I. Dlouhy, The origins of high-entropy alloy contamination induced by mechanical alloying and sintering. Metals 10, 9 (2020)

    Article  Google Scholar 

  22. M. Vaidya, A. Karati, K. Guruvidyathri, M. Nagini, K.G. Pradeep, B.S. Murty, Suppression of σ-phase in nanocrystalline CoCrFeMnNiV high entropy alloy by unsolicited contamination during mechanical alloying and spark plasma sintering. Mater. Chem. Phys. 255, 123558 (2020)

    Article  CAS  Google Scholar 

  23. Y.-L. Chen, Y.-H. Hu, C.-A. Hsieh, J.-W. Yeh, S.-K. Chen, Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system. J. Alloys Compd. 481(1), 768–775 (2009)

    Article  CAS  Google Scholar 

  24. R. John, A. Karati, M.M. Garlapati, M. Vaidya, R. Bhattacharya, D. Fabijanic, B.S. Murty, Influence of mechanically activated annealing on phase evolution in Al0.3CoCrFeNi high-entropy alloy. J. Mater. Sci. 54(23), 14588–14598 (2019)

    Article  CAS  Google Scholar 

  25. M.M. Garlapati, M. Vaidya, A. Karati, S. Mishra, R. Bhattacharya, B.S. Murty, Influence of Al content on thermal stability of nanocrystalline AlxCoCrFeNi high entropy alloys at low and intermediate temperatures. Adv. Powder Technol. 31(5), 1985–1993 (2020)

    Article  CAS  Google Scholar 

  26. M. Vaidya, A. Prasad, A. Parakh, B.S. Murty, Influence of sequence of elemental addition on phase evolution in nanocrystalline AlCoCrFeNi: novel approach to alloy synthesis using mechanical alloying. Mater. Des. 126, 37–46 (2017)

    Article  CAS  Google Scholar 

  27. A. Fourmont, S. Le Gallet, O. Politano, C. Desgranges, F. Baras, Effects of planetary ball milling on AlCoCrFeNi high entropy alloys prepared by Spark Plasma Sintering: experiments and molecular dynamics study. J. Alloys Compd. 820, 153448 (2020)

    Article  CAS  Google Scholar 

  28. E. Colombini, R. Rosa, L. Trombi, M. Zadra, A. Casagrande, P. Veronesi, High entropy alloys obtained by field assisted powder metallurgy route: SPS and microwave heating. Mater. Chem. Phys. 210, 78–86 (2018)

    Article  CAS  Google Scholar 

  29. R.B. Mane, B.B. Panigrahi, Comparative study on sintering kinetics of as-milled and annealed CoCrFeNi high entropy alloy powders. Mater. Chem. Phys. 210, 49–56 (2018)

    Article  CAS  Google Scholar 

  30. R.B. Mane, B.B. Panigrahi, Sintering mechanisms of mechanically alloyed CoCrFeNi high-entropy alloy powders. J. Mater. Res. 33(19), 3321–3329 (2018)

    Article  CAS  Google Scholar 

  31. S. Rohila, R.B. Mane, G. Ummethala, B.B. Panigrahi, Nearly full-density pressureless sintering of AlCoCrFeNi-based high-entropy alloy powders. J. Mater. Res. 34(5), 777–786 (2019)

    Article  CAS  Google Scholar 

  32. W.-R. Wang, W.-L. Wang, J.-W. Yeh, Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures. J. Alloys Compd. 589, 143–152 (2014)

    Article  CAS  Google Scholar 

  33. P. Wang, H. Cai, S. Zhou, L. Xu, Processing, microstructure and properties of Ni1.5CoCuFeCr0.5−xVx high entropy alloys with carbon introduced from process control agent. J. Alloys Compd. 695, 462–475 (2017)

    Article  CAS  Google Scholar 

  34. R. Sokkalingam, M. Tarraste, K.B. Surreddi, V. Mikli, V. Muthupandi, K. Sivaprasad, K.G. Prashanth, Powder metallurgy of Al0.1CoCrFeNi high-entropy alloy. J. Mater. Res. 35(21), 2835–2847 (2020)

    Article  CAS  Google Scholar 

  35. O. Molnarova, J. Duchon, E. de Prado, S. Csaki, F. Prusa, P. Malek, Bimodal microstructure in an AlZrTi alloy prepared by mechanical milling and spark plasma sintering. Materials 13, 17 (2020)

    Article  Google Scholar 

  36. Y.-F. Kao, T.-J. Chen, S.-K. Chen, J.-W. Yeh, Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0≤x≤2) high-entropy alloys. J. Alloys Compd. 488(1), 57–64 (2009)

    Article  CAS  Google Scholar 

  37. M. Annasamy, N. Haghdadi, A. Taylor, P. Hodgson, D. Fabijanic, Static recrystallization and grain growth behaviour of Al0.3CoCrFeNi high entropy alloy. Mater. Sci. Eng. A 754, 282–294 (2019)

    Article  CAS  Google Scholar 

  38. J. Hou, M. Zhang, S. Ma, P.K. Liaw, Y. Zhang, J. Qiao, Strengthening in Al0.25CoCrFeNi high-entropy alloys by cold rolling. Mater. Sci. Eng. A 707, 593–601 (2017)

    Article  CAS  Google Scholar 

  39. S. Yang, X. Yan, K. Yang, Z. Fu, Effect of the addition of nano-Al2O3 on the microstructure and mechanical properties of twinned Al0.4FeCrCoNi1.2Ti0.3 alloys. Vacuum 131, 69–72 (2016)

    Article  CAS  Google Scholar 

  40. S. Hovard, K.D. Preston, Profile fitting of powder diffraction patterns. Minerology 20(4), 217–275 (1989)

    Google Scholar 

Download references

Acknowledgments

The support of the Deakin Advanced Characterization Facility and Sophisticated Analytical Instrument Facility IIT Madras is gratefully acknowledged. We are thankful to Dr. Lavanya Raman of IIT Madras for her guidance in XRD analysis and Dr. Qi Chao of Deakin University for his support in TEM sample preparation.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to B. S. Murty.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7764 KB).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, R., Annasamy, M., Cizek, P. et al. Evolution of phase constitution with mechanical alloying and spark plasma sintering of nanocrystalline AlxCoCrFeNi (x = 0, 0.3, 0.6, 1 mol) high-entropy alloys. Journal of Materials Research 37, 959–975 (2022). https://doi.org/10.1557/s43578-021-00483-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00483-0

Keywords

Navigation