Skip to main content
Log in

Ir-Nb-Si ternary refractory superalloys with a three-phase Fcc/L12/silicide structure for high-temperature applications: Phase and microstructural evolution

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

To find a new phase with the potential to improve the high-temperature strength of Ir-based superalloys, the novel idea of introducing silicides into the Ir-Nb binary was implemented. Hypoeutectic Ir-10Nb, eutectic Ir-16Nb, and hypereutectic Ir-25Nb alloys were used as bases, and 5 mol pct Si was added through the removal of Ir. XRD (XRD), scanning electron microscopy (SEM), and electron-probe microanalysis (EPMA) revealed the formation of a three-phase fcc/L12/silicide microstructure in the Ir-Nb-Si ternary after Si addition. The type of silicide formed was dependent on heat-treated temperatures and Nb content. After heat treatment at 1750 °C and 1600 °C, a tie-triangle composed of fcc/L12/silicide (Ir2Si) appeared in the Ir-10Nb-5Si and Ir-16Nb-5Si alloys; in the Ir-25Nb-5Si alloy, an L12 and silicide (Ir,Nb)2Si tie-line was observed. In the as-cast and 1300 °C heat-treated samples, the Ir-10Nb-5Si microstructure changed to a two-phase fcc/silicide structure, while the Ir-16Nb-5Si alloy maintained a three-phase fcc/L12/silicide structure. The Ir-25Nb-5Si alloy, however, had the same phases as that at 1600 °C. Silicides typically continuously or discontinuously distribute along the interdendritic regions or grain boundaries of the fcc or the L12 phase. With the addition of Si, it was found that both the eutectic point and solid solubility of Nb in Ir would shift toward Ir.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Yamabe, Y. Koizumi, H. Murakami, Y. Ro, T. Maruko, and H. Harada: Scripta Mater., 1996, vol. 35 (2), pp. 211–15.

    Article  CAS  Google Scholar 

  2. Y. Yamabe-Mitarai, Y. Ro, T. Maruko, and H. Harada: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 537–49.

    Article  CAS  Google Scholar 

  3. Y. Gu, Y. Yamabe-Mitarai, Y. Ro, T. Yokokawa, and H. Harada: Scripta Mater., 1998, vol. 39 (6), pp. 723–28.

    Article  CAS  Google Scholar 

  4. Y. Gu, Y. Yamabe-Mitarai, Y. Ro, T. Yokokawa, and H. Harada: Metall. Mater. Trans. A, 1998, vol. 30A, pp. 2629–39.

    Google Scholar 

  5. Y. Yamabe-Mitarai, Y. Ro, T. Maruko, and H. Harada: Intermetallics, 1999, vol. 7, pp. 49–58.

    Article  Google Scholar 

  6. Y. Yamabe-Mitarai, Y. Ro, T. Maruko, and H. Harada: Scripta Mater., 1999, vol. 40 (1), pp. 109–15.

    CAS  Google Scholar 

  7. Y. Gu, Y. Yamabe-Mitarai, Y. Ro, and H. Harada: Scripta Mater., 1999, vol. 40 (11), pp. 1313–19.

    Article  CAS  Google Scholar 

  8. X. Yu, Y. Yamabe-Mitarai, Y. Ro, and H. Harada: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 173–78.

    Article  CAS  Google Scholar 

  9. X.H. Yu, Y. Yamabe-Mitarai, S. Nakazawa, Y. Ro, and H. Harada: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1347–53.

    Article  CAS  Google Scholar 

  10. P. Hill, Y. Yamabe-Mitarai, and I.W. Wolff: Scripta Mater., 2001, vol. 44, pp. 43–48.

    Article  CAS  Google Scholar 

  11. Y. Gu, Y. Yamabe-Mitarai, and H. Harada: Scripta Mater., 2002, vol. 46, pp. 137–42.

    Article  CAS  Google Scholar 

  12. Y. Gu, Y. Yamabe-Mitarai, and H. Harada: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1281–83.

    CAS  Google Scholar 

  13. Y. Yamabe-Mitarai and H. Harada: J. Alloys Compounds, 2003, vol. 361, pp. 169–79.

    Article  CAS  Google Scholar 

  14. Y. Yamabe-Mitarai, Y. Gu, and H. Harada: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2207–15.

    Article  CAS  Google Scholar 

  15. Binary Alloy Phase Diagrams, T.B. Massalski, ed., ASM INTERNATIONAL, Materials Park, OH, 1992, pp. 2082, 2330, 2335, 2336, and 2366.

    Google Scholar 

  16. N.S. Stoloff: in Superalloys II, C.T. Sims, N.S. Stoloff, and W.C. Hagel, eds., John Wiley & Sons, New York, NY, 1987, p. 66.

    Google Scholar 

  17. H. Okamoto: J. Phase Equilibria, 1995, vol. 16 (5), pp. 473–74.

    Google Scholar 

  18. Y. Kimura, T. Shimizu, S. Shiina, and Y. Mishima: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 591–99.

    Article  CAS  Google Scholar 

  19. J.B. Sha and Y. Yamabe-Mitarai: National Institute for Materials Science, Ibaraki, Japan, unpublished research, 2004.

  20. F. Chu, D.J. Thoma, K.J. McClellan, P. Peralta, F.X. Li, and E. Fodra: High-Temperature Ordered Intermetallic Alloys VIII, Materials Research Society Symposia Proceedings, Materials Research Society, Pittsburgh, PA, 1998, vol. 522, pp. KK6.7.1-KK6.7.11.

    Google Scholar 

  21. M.R. Jackson, B.P. Bewlay, and R.G. Rowe: JOM, 1996, vol. 48, pp. 39–44.

    CAS  Google Scholar 

  22. B.P. Bewlay, J.J. Lewandowksi, and M.R. Jackson: JOM, 1997, vol. 49, pp. 44–46 and 67.

    CAS  Google Scholar 

  23. J.B. Sha, H. Hirai, T. Tabaru, H. Ueno, A. Kitahara, and S. Hanada: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 85–94.

    Article  CAS  Google Scholar 

  24. J.B. Sha, H. Hirai, T. Tabaru, H. Ueno, A. Kitahara, and S. Hanada: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2861–71.

    CAS  Google Scholar 

  25. J.B. Sha, H. Hirai, T. Tabaru, H. Ueno, A. Kitahara, and S. Hanada: Mater. Sci. Eng., 2004, vol. A364, pp. 151–58.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sha, J.B., Yamabe-Mitarai, Y. & Harada, H. Ir-Nb-Si ternary refractory superalloys with a three-phase Fcc/L12/silicide structure for high-temperature applications: Phase and microstructural evolution. Metall Mater Trans A 37, 1831–1839 (2006). https://doi.org/10.1007/s11661-006-0126-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-0126-7

Keywords

Navigation