Skip to main content
Log in

Phase stability and alloying behavior in the Mo-Si-B system

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of transition metal (TM) substitution for Mo has been examined in terms of the phase stability and multiphase microstructures in the Mo-Si-B ternary system. The metal-rich portion of the ternary Mo-Si-B system at equilibrium is comprised of thermally stable bcc Mo(ss) phase, a ternary-based Mo5SiB2 (T2) phase, and a binary-based metal-rich silicide (Mo3Si [A15]). The structures that are developed by following systematic alloying with a wide range of TMs, which are substitutional in both Mo(ss) and T2 phases (group IVB, VB, and VIB metals), have been analyzed to elucidate the roles of the substitution on the stability of the three phase fields of Mo(ss) + T2 + Mo3Si. In particular, the borosilicide ternary-based T2 phase shows an extended solid solution with a wide range of TMs. The extended solubility in the T2 phase essentially mimics the alloying behavior of the TM-based bcc phase. The critical factor for the phase stability appears to be the existence of a unique feature of bcc-like TM clusters within the T2 lattice structure. The combined criteria of atomic size factor and the valence electron concentration per atom (e/a) have been used to elucidate the observed alloying behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.H. Perepezko, R. Sakidja, and S. Kim: in High Temperature Ordered Intermetallic Alloys IX, J.H. Schneibel et al., eds., MRS, Pittsburgh, PA, 2001, pp. N4.5.1-N4.5.12.

    Google Scholar 

  2. J.H. Perepezko, C.A. Nunes, S.H. Yi, and D.J. Thoma: in High Temperature Ordered Intermetallic Alloys VII, C.C. Koch, C.T. Liu, N.S. Stoloff, and A. Warner, eds., MRS, Pittsburgh, PA, 1997, pp. 3–14.

    Google Scholar 

  3. R. Sakidja, H. Sieber, and J.H. Perepezko: in Molybdenum and Molybdenum Alloys, A. Crowson et al., eds., TMS, Warrendale, PA, 1998, pp. 99–110.

    Google Scholar 

  4. J.H. Schneibel, C.T. Liu, D.S. Easton, and C.A. Carmichael: Mater. Sci. Eng. A, 1999, vols. 1–2, pp. 78–83.

    Google Scholar 

  5. K. Maex, G. Ghosh, L. Delaey, V. Probst, P. Lippens, L.v.d. Hove, and R.F.D. Keersmaeker: J. Mater. Res., 1989, vol. 4 (5), pp. 1209–17.

    CAS  Google Scholar 

  6. P. Villars, A. Prince, and H. Okomoto: Handbook of Ternary Alloy Phase Diagrams, ASM INTERNATIONAL, Materials Park, OH, 1995, pp. 5704–05.

    Google Scholar 

  7. E. Parthe and J.T. Norton: Monatshefte Chemie, 1960, vol. 91, pp. 1127–33.

    Article  CAS  Google Scholar 

  8. W.D. Klopp: J. Less-Common Met., 1975, vol. 42, pp. 261–78.

    Article  CAS  Google Scholar 

  9. J.R. Stephens and W.D. Klopp: Trans. Soc. Min. Eng. AIME, 1968, vol. 242, pp. 1837–43.

    Google Scholar 

  10. F.R. Boer, R. Boom, W.C.M. Matiens, A.R. Miedema, and A.K. Niessen: Cohesion in Metals—Transition Metal Alloys, Elsevier Science, New York, NY, 1989.

    Google Scholar 

  11. W.A. Harrison: Electronic Structure and the Properties of Solids, Dover, New York, NY, 1989.

    Google Scholar 

  12. A.R. Williams, C.D. Gelatt, J.W.D. Connolly, and V.L. Moruzzi: in Alloy Phase Diagram, L.H. Bennett, T.B. Massalski, and B.C. Giessen, eds., North-Holland, New York, NY, 1983, p. 17.

    Google Scholar 

  13. D.G. Pettifor: J. Phys. F, 1977, vol. 7, pp. 613–33.

    Article  CAS  Google Scholar 

  14. H.L. Skriver: The LMTO Method, Springer, Berlin, 1984.

    Google Scholar 

  15. http://www.softbug.com/toycrate/bs/index.html.

  16. S.H. Vosko, L. Wilk, and M. Nusair: Can. J. Phys., 1980, vol. 58, pp. 1200–11.

    Article  CAS  Google Scholar 

  17. O.K. Andersen: Phys. Rev. B, 1975, vol. 12, pp. 3060–83.

    Article  CAS  Google Scholar 

  18. O.K. Andersen and O. Jepsen: Phys. Rev. Lett., 1984, vol. 53, pp. 2571–74.

    Article  CAS  Google Scholar 

  19. O.K. Andersen, Z. Pawlowska, and O. Jepsen: Phys. Rev. B, 1986, vol. 34, pp. 5253–65.

    Article  CAS  Google Scholar 

  20. http://www.fkf.mpg.de/andersen/.

  21. S.Y. Savrasov: Phys. Rev. B, 1996, vol. 54, pp. 16470–86.

    Article  CAS  Google Scholar 

  22. S.Y. Savrasov: http://physics.njit.edu/~savrasov/, 2004.

  23. C.J. Rawn, J.H. Schneibel, C.M. Hoffmann, and C.R. Hubbard: Intermetallics, 2001, vol. 9, pp. 209–16.

    Article  CAS  Google Scholar 

  24. L. Pauling: The Nature of the Chemical Bond, 3rd ed., Cornell University Press, Ithaca, NY, 1960.

    Google Scholar 

  25. G. Hagg: Z. Phys. Chemie Abteilung B, 1931, vol. 12, p. 33.

    CAS  Google Scholar 

  26. B. Aronsson: Acta Chem. Scand., 1958, vol. 12, pp. 31–37.

    CAS  Google Scholar 

  27. B. Aronsson and G. Lundgren: Acta Chem. Scand., 1959, vol. 13, pp. 433–43.

    Article  Google Scholar 

  28. H. Nowotny, E. Dimakopoulou, and H. Kudielka: Monatshefte Chemie, 1957, vol. 88, p. 180.

    Article  CAS  Google Scholar 

  29. H. Nowotny, R. Kieffer, and F. Benesovsky: Planseeberichte Pulvermetallurgie, 1957, vol. 5, pp. 86–93.

    CAS  Google Scholar 

  30. H. Nowotny, F. Benesovsky, E. Rudy, and A. Wittmann: Monatshefte Chemie, 1960, vol. 91, pp. 975–90.

    Article  CAS  Google Scholar 

  31. E.A. Franceschi and F. Ricaldone: Rev. Chimie Minerale, 1984, vol. 21, p. 202.

    CAS  Google Scholar 

  32. C.L. Fu, X. Wang, Y.Y. Ye, and K.M. Ho: Intermetallics, 1999, vol. 7, pp. 179–84.

    Article  CAS  Google Scholar 

  33. C.L. Fu and X. Wang: Phil. Mag. Lett., 2000, vol. 80 (10), pp. 683–90.

    Article  CAS  Google Scholar 

  34. C.L. Fu, A.J. Freeman, and T. Oguchi: Phys. Rev. Lett., 1985, vol. 54 (25), pp. 2700–03.

    Article  CAS  Google Scholar 

  35. S. Ohnishi, A.J. Freeman, and M. Weinert: Phys. Rev. B, 1983, vol. 28, pp. 6741–48.

    Article  CAS  Google Scholar 

  36. J.-H. Xu, T. Oguchi, and A.J. Freeman: Phys. Rev. B, 1987, vol. 35, pp. 6940–43.

    Article  CAS  Google Scholar 

  37. J.-H. Xu and A.J. Freeman: Phys. Rev. B, 1989, vol. 40, pp. 11927–30.

    Article  CAS  Google Scholar 

  38. J.-H. Xu and A.J. Freeman: Phys. Rev. B, 1990, vol. 41, pp. 12553–61.

    Article  CAS  Google Scholar 

  39. S. Katrycha, A. Grytsiva, A. Bondara, P. Rogle, T. Velikanova, and M. Bohn: J. Solid State Chem., vol. 177 (2), pp. 493–97.

  40. C.D. Gelatt, A.R. Williams, and V.L. Moruzzi: Phys. Rev. B, 1983, vol. 27, pp. 2005–13.

    Article  CAS  Google Scholar 

  41. W. Speier: J. Phys. Condens. Matter, 1989, vol. 1, pp. 9117–29.

    Article  CAS  Google Scholar 

  42. R. Pottgen, R.-D. Hoffmann, and D. Kussmann: Z. Anorg. Allg. Chem., 1998, vol. 624, p. 945–51.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made in the symposium entitled “Beyond Nickel-Base Superalloys,” which took place March 14–18, 2004, at the TMS Spring meeting in Charlotte, NC, under the auspices of the SMD-Corrosion and Environmental Effects Committee, the SMD-High Temperature Alloys Committee, the SMD-Mechanical Behavior of Materials Committee, and the SMD-Refractory Metals Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakidja, R., Perepezko, J.H. Phase stability and alloying behavior in the Mo-Si-B system. Metall Mater Trans A 36, 507–514 (2005). https://doi.org/10.1007/s11661-005-0164-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-005-0164-6

Keywords

Navigation