Skip to main content
Log in

Effects of partial recrystallization on high-cycle fatigue deformation and crack generation of a nitrogen-strengthened 32Mn-7Cr austenitic steel at liquid-nitrogen temperature

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

To achieve higher fatigue resistance against subsurface crack generation, both the refinement of grain structure and the introduction of mobile dislocations on various slip systems have been shown to be effective in the 32Mn-7Cr austenitic steel. A novel treatment which consisted of cold grooved rolling and partial recrystallization was introduced to modify the microstructure. High-cycle fatigue properties and fatigue-crack generation were investigated for both the solution-treated (ST) and the partially recrystallized (PR) materials at 77 K. The PR material displayed higher fatigue strength than the ST material, especially in the high-cycle regime. No subsurface crack generation was detected for the PR material; however, it appeared in the lower peak stress and/or in the longer-life range for the ST material. Intergranular facets formed a subsurface crack initiation site in the ST material. Since the dislocation structure that developed in the fatigued PR material assisted homogeneous and multidirectional plastic deformation, the localized deformation and/or the stress concentration at the grain boundaries by coplanar arrays were believed to be relieved. Therefore, intergranular cracking due to incompatibility at a grain boundary may disappear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Umezawa and K. Nagai: Iron Steel Inst. Jpn. Int., 1997, vol. 37, pp. 1170–79.

    CAS  Google Scholar 

  2. O. Umezawa and K. Nagai: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 809–22.

    Article  CAS  Google Scholar 

  3. H. Yokoyama, O. Umezawa, K. Nagai, T. Suzuki, and K. Kokubo: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2793–805.

    Article  CAS  Google Scholar 

  4. O. Umezawa and K. Nagai: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 3017–28.

    Article  CAS  Google Scholar 

  5. O. Umezawa, K. Nagai, and K. Ishikawa: Tetsu-to-Hagané, 1990, vol. 76, pp. 924–31 (in Japanese).

    CAS  Google Scholar 

  6. H. Kitagawa, S. Takahashi, C.M. Suh, and S. Miyashita: in Fatigue Mechanisms, ASTM STP 675, J.T. Fong, ed., ASTM, Philadelphia, PA, 1979, pp. 420–49.

    Google Scholar 

  7. O. Umezawa, K. Nagai, and K. Ishikawa: Tetsu-to-Hagané, 1989, vol. 75, pp. 159–66 (in Japanese).

    CAS  Google Scholar 

  8. Y. Murata, K. Koyama, Y. Matsumoto, M. Morinaga, and N. Yukawa: Iron Steel Inst. Jpn. Int., 1990, vol. 30, pp. 927–36.

    CAS  Google Scholar 

  9. F. Abe, H. Araki, and T. Noda: Mater. Sci. Technol., 1988, vol. 4, pp. 885–93.

    CAS  Google Scholar 

  10. R. Miura, H. Nakajima, Y. Takahashi, and K. Yoshida: Advances in Cryogenic Engineering Materials, Plenum Press, New York, NY, 1984, vol. 30, pp. 245–52.

    Google Scholar 

  11. K. Kanazawa, M. Kimura, and S. Nishjima: NRIM Material Strength Data Sheet—Technical Document, NRIM, Tsukuba, 1996, No. 14 (in Japanese).

    Google Scholar 

  12. M. Klesnil and P. Lukas: Fatigue of Metallic Materials, 2nd ed., Elsevier, Amsterdam, 1992.

    Google Scholar 

  13. R.K. Steele and A.J. McEvily: Eng. Fract. Mech., 1976, vol. 8, pp. 31–37.

    Article  CAS  Google Scholar 

  14. M.F. Ashby: Phil. Mag., 1970, vol. 21, pp. 399–424.

    CAS  Google Scholar 

  15. A.M. Freudenthal: Eng. Fract. Mech., 1974, vol. 6, pp. 775–93.

    Article  CAS  Google Scholar 

  16. P. Neuman: Acta Metall., 1969, vol. 17, pp. 1219–25.

    Article  Google Scholar 

  17. J.W. Morris, Jr., S.K. Hwang, K.A. Yuschenko, V.I. Belotzerkovetz, and O.G. Kvanevskii: Advances in Cryogenic Engineering Materials, Plenum Press, New York, NY, 1978, vol. 24, pp. 91–102.

    Google Scholar 

  18. Y. Tomota and S. Shibuki: Iron Steel Inst. Jpn. Int., 1990, vol. 30, pp. 663–65.

    CAS  Google Scholar 

  19. H. Tanaka, N. Kondo, K. Fujita, and K. Shibata: Iron Steel Inst. Jpn. Int., 1990, vol. 30, pp. 646–55.

    CAS  Google Scholar 

  20. H. Mughrabi: in Investigations and Applications of Severe Plastic Deformation, NATO Science Partnership Sub-Series, T.C. Lowe and R.Z. Valiev, eds., 2000, vol. 80, Kluwer Academic Publishers, Dordrecht, pp. 241–53.

    Google Scholar 

  21. A. Vinogradov and S. Hashimoto: Mater. Trans., 2001, vol. 42, pp. 74–84.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Umezawa, O. Effects of partial recrystallization on high-cycle fatigue deformation and crack generation of a nitrogen-strengthened 32Mn-7Cr austenitic steel at liquid-nitrogen temperature. Metall Mater Trans A 35, 543–553 (2004). https://doi.org/10.1007/s11661-004-0365-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0365-4

Keywords

Navigation