Skip to main content
Log in

Cyclic deformation, dislocation structure, and internal fatigue crack generation in a Ti-Fe-O alloy at liquid nitrogen temperature

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

To clarify the internal fatigue crack generation in a Ti-Fe-O (near α-type) alloy, microstructures, internal fatigue crack initiation sites, and dislocation structures in samples fractured during high-cycle fatigue tests at liquid nitrogen temperature were studied. The alloy contained two kinds of elongated α-phase microstructures, i.e., recovered α grains and recrystallized α grains. Untested samples contained mobile dislocations in recovered α grains, but in recrystallized α grains, any dislocations were observed. Internal crack initiation sites were formed transgranularly and were related to the recrystallized α grain region, judging from their morphology, size, and chemistry. Dislocations in recovered α grains were rearranged after cyclic loading in either \(\left\{ {01\bar 10} \right\} - \left\langle {11\bar 20} \right\rangle \) planar arrays or subgrain structures due to dislocation annihilation. Few dislocations were seen in recrystallized α grains. We discuss the relationship between localized strain incompatibility due to coplanar arrays in recovered α, grains and transgranular cracking in recrystallized α grains, and propose a model for fatigue crack generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Klesnil and P. Lukas: Fatigue of Metallic Materials, 2nd ed., Elsevier, Amsterdam, 1992, p. 84.

    Google Scholar 

  2. O. Umezawa and K. Nagai: Iron Steel Inst. Jpn. Int., 1997, vol. 37, pp. 1170–79.

    CAS  Google Scholar 

  3. W.A. Wood: in Fatigue in Aircraft Structures, A.M. Freudenthal, ed., Academic Press, New York, NY, 1956, p. 1.

    Google Scholar 

  4. P. Neumann: Acta Metall., 1969, vol. 17, pp. 1219–25.

    Article  CAS  Google Scholar 

  5. O. Umezawa, K. Nagai, and K. Ishikawa: in Fatigue’ 90, H. Kitagawa and T. Tanaka, eds., Mater. Component Eng. Pub., Birmingham, United Kingdom, 1990, vol. 1, pp. 267–72.

    Google Scholar 

  6. O. Umezawa, K. Nagai, and K. Ishikawa: Mater. Sci. Eng., 1990, vol. A129, pp. 217–21.

    CAS  Google Scholar 

  7. O. Umezawa and K. Nagai: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 809–22.

    Google Scholar 

  8. J.T. Fourie: Phil. Mag., 1968, vol. 17, pp. 735–56.

    Article  CAS  Google Scholar 

  9. I.R. Kramer, C.R. Fong, and B. Wu: Mater. Sci. Eng., 1986, vol. 80, pp. 37–48.

    Article  Google Scholar 

  10. S. Adachi, L. Wagner, and G. Lütjering: in Titanium Science and Technology, G. Lütjering, U. Zwicher, and W. Bunk, eds., Deutsche Gesellschaft für Metallkunde, Oberursel, 1985, vol. 4, pp. 2139–46.

    Google Scholar 

  11. O. Umezawa and K. Ishikawa: Mater. Sci. Eng. A, 1994, vol. A176, pp. 397–403.

    Google Scholar 

  12. H. Yokoyama, O. Umezawa, K. Nagai, and T. Suzuki: Iron Steel Inst. Jpn. Int., 1997, vol. 37, pp. 1237–44.

    CAS  Google Scholar 

  13. T. Shindo, T. Watanabe, and M. Kondo: Proc. Int. Conf. on Titanium Products and Applications, Titanium Development Association, Boulder, CO, 1990, p. 469.

    Google Scholar 

  14. J. Ruppen, P. Bhowal, D. Eylon, and A.J. McEvily: Fatigue Mechanisms, Special Technical Publication 675, ASTM, Philadelphia, PA, 1978, pp. 47–68.

    Google Scholar 

  15. D.F. Neal and P.A. Blenkinsop: Acta Metall., 1976, vol. 24, pp. 59–63.

    Article  CAS  Google Scholar 

  16. S.I. Hong and C. Laird: Acta Metall. Mater., 1990, vol. 38, pp. 1581–94.

    Article  CAS  Google Scholar 

  17. V. Gerold and H.P. Karnthaler: Acta Metall., 1989, vol. 37, pp. 2177–83.

    Article  CAS  Google Scholar 

  18. O. Umezawa, K. Nagai, H. Yokoyama, and T. Suzuki: in High Cycle Fatigue of Structural Materials, W.O. Soboyejo and T.S. Srivatsan, eds., TMS, Warrendale, PA, 1997, pp. 287–98.

    Google Scholar 

  19. M. Peters, A. Gysler, and G. Lütjering: Metall. Trans. A, 1984, vol. 15A, pp. 1597–1605.

    CAS  Google Scholar 

  20. O. Umezawa, K. Nagai, and K. Ishikawa: Mater. Sci. Eng. A, 1990, vol. A129, pp. 223–7.

    CAS  Google Scholar 

  21. T. Ogata and K. Ishikawa: Trans. Iron Steel Inst. Jpn., 1986, vol. 26, pp. 48–52.

    Google Scholar 

  22. T. Ogata, K. Ishikawa, K. Nagai, T. Yuri, and O. Umezawa: Cryogenic Eng., 1991, vol. 26, pp. 190–96 (in Japanese).

    CAS  Google Scholar 

  23. T.A. Manson and B.L. Adams: JOM, 1994, vol. 46, pp. 43–45.

    Google Scholar 

  24. H. Yokoyama, O. Umezawa, K. Nagai, T. Suzuki, and K. Kokubo: Titanium ’99 Sci. Technol., 2000, in press.

  25. A.N. Stroh: Proc. R. Soc. London, Ser. A, 1954, vol. 223, p. 404.

    Article  Google Scholar 

  26. C. Sarrazin, R. Chiron, S. Lesterlin, and J. Petit: Fatigue Fract. Eng. Mater. Struct., 1994, vol. 17, pp. 1383–9.

    Article  CAS  Google Scholar 

  27. R.J. Wilson, M.R. Bache, and W.J. Evans: in Small Fatigue Cracks, Mechanics, Mechanisms and Applications, K.S. Ravichandran, R.O. Ritchie, and Y. Murakami eds., Elsevier Science, New York, NY, 1999, pp. 199–206.

    Google Scholar 

  28. M.R. Bache, W.J. Evans, and H.M. Davies. J. Mater. Sci., 1997, vol. 32, pp. 3435–42.

    Article  CAS  Google Scholar 

  29. D.L. Davidson and D. Eylon: Metall. Trans. A, 1980, vol. 11A, pp. 837–43.

    CAS  Google Scholar 

  30. D. Shechtman and D. Eylon: Metall. Trans. A, 1978, vol. 9A, pp. 1018–20.

    CAS  Google Scholar 

  31. E.D. Levine: Trans. AIME, 1966, vol. 236, pp. 1558–64.

    CAS  Google Scholar 

  32. M.P. Biget and G. Saada: Phil. Mag. A, 1989, vol. 59, pp. 747–57.

    Article  CAS  Google Scholar 

  33. C.C. Wojcik, K.S. Chan, and D.A. Koss: Acta Metall., 1988, vol. 36, pp. 1261–70.

    Article  CAS  Google Scholar 

  34. R.K. Steele and A.J. McEvily: Fract. Mech., 1976, vol. 8, pp. 31–37.

    Article  CAS  Google Scholar 

  35. R. Chait and T.S. DeSisto: Metall. Trans. A, 1977, vol. 8A, pp. 1017–20.

    CAS  Google Scholar 

  36. X. Feaugas and M. Clavel: Acta Mater., 1997, vol. 45, pp. 2685–2701.

    Article  CAS  Google Scholar 

  37. M.F. Ashby: Phil. Mag., 1970, vol. 21, pp. 399–424.

    Article  CAS  Google Scholar 

  38. W.J. Evans and M.R. Bache: Int. J. Fatigue, 1994, vol. 16, pp. 443–52.

    Article  CAS  Google Scholar 

  39. J.K. Mackenzie: Ph.D. Thesis, Bristol University, Bristol, United Kingdom, 1949.

    Google Scholar 

  40. S. Naka, A. Lasalmonie, P. Costa, and L.P. Kubin: Phil. Mag. A, 1988, vol. 57, pp. 717–40.

    Article  CAS  Google Scholar 

  41. D. Hull and D.J. Bacon: Introduction to Dislocations, 3rd ed., Pergamon Press, Elmsford, NY, 1984, p. 208.

    Google Scholar 

  42. F.E. Fujita: Acta. Metal., 1958, vol. 6, pp. 543–51.

    Article  Google Scholar 

  43. P. Hansen: Physical Metallurgy, 2nd ed., Cambridge University Press, Cambridge, United Kingdom, 1986, p. 306.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yokoyama, H., Umezawa, O., Nagai, K. et al. Cyclic deformation, dislocation structure, and internal fatigue crack generation in a Ti-Fe-O alloy at liquid nitrogen temperature. Metall Mater Trans A 31, 2793–2805 (2000). https://doi.org/10.1007/BF02830339

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02830339

Keywords

Navigation