Skip to main content
Log in

Deformation structure and subsurface fatigue crack generation in austenitic steels at low temperature

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In order to progress in the understanding of fatigue crack generation for high-strength alloys, the subsurface fatigue crack initiation sites were characterized and the deformation structure was investigated for the solution-treated 24Cr-15Ni-4Mn-0.3N and 32Mn-7Cr-0.1N austenitic steels. High-cycle fatigue tests of those steels were carried out at 4, 77, and 293 K. Subsurface crack initiation was detected in the lower-peak stress and/or in the longer-life range at the three temperatures. The subsurface crack initiation sites were intergranularly formed. The localized deformation and/or strain concentration by dislocation arrays of the (111)–〈110〉 system assisted intergranular cracking due to incompatibility at grain boundaries. Dislocation movements were restricted to their slip planes. Even at the lower stress level, dislocations had generated in more than one slip system and piled up to a grain boundary. The peak cyclic stress was lowered with the increasing size of the subsurface crack initiation site. The dependence of the subsurface crack size on the peak cyclic stress was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Nagai, T. Yuri, O. Umezawa, T. Ogata, and K. Ishikawa: Stainless Steel ’91, Iron and Steel Institute of Japan, Tokyo, 1991, vol. 1, pp. 465–72.

    Google Scholar 

  2. O. Umezawa, K. Nagai, T. Yuri, T. Ogata, and K. Ishikawa: Advances in Cryogenic Engineering Materials, Plenum Press, New York, 1992, vol. 38, pp. 175–82.

    Google Scholar 

  3. P. Neumann: Acta Metall., 1969, vol. 17, pp. 1219–25.

    Article  CAS  Google Scholar 

  4. O. Umezawa and K. Nagai: Iron Steel Inst. Jpn. Int., 1997, vol. 37, pp. 1170–79.

    CAS  Google Scholar 

  5. O. Umezawa, K. Nagai, and K. Ishikawa: in Fatigue 90, H. Kitagawa and T. Tanaka, eds., MCEP, Brimingham, United Kingdom, 1990, vol. 1, pp. 267–72.

    Google Scholar 

  6. I. Yamauchi: Report in Non-Magnetic Steel Research Meeting, Iron and Steel Institute of Japan, Tokyo (in Japanese), 1989, November.

    Google Scholar 

  7. R. Miura, H. Nakajima, Y. Takahashi, and K. Yoshida: Advances in Cryogenic Engineering Materials, Plenum Press, New York, 1984, vol. 30, pp. 245–252.

    Google Scholar 

  8. K. Shibata, Y. Kishimoto, N. Namura, and T. Fujita: in Fatigue at Low Temperatures, ASTM STP 857, R.I. Stephens, ed., ASTM, Philadelphia, PA, 1985, pp. 31–46.

    Google Scholar 

  9. T. Ogata: Report on Standardization of Testing Methods for New Energy Materials, New Material Center, Osaka, 1994, pp. 75–92 (in Japanese).

    Google Scholar 

  10. O. Umezawa, K. Nagai, and K. Ishikawa: Mater. Sci. Eng., 1990, vol. A129, pp. 223–27.

    CAS  Google Scholar 

  11. O. Umezawa, K. Nagai, and K. Ishikawa: Mater. Sci. Eng., 1990, vol. A129, pp. 217–21.

    CAS  Google Scholar 

  12. T. Ogata and K. Ishikawa: Trans. Iron Steel Inst. Jpn., 1986, vol. 26, pp. 48–52.

    Google Scholar 

  13. T. Ogata, K. Ishikawa, K. Nagai, T. Yuri, and O. Umezawa: Cryogenic Eng., 1991, vol. 26, pp. 190–96 (in Japanese).

    CAS  Google Scholar 

  14. K. Kanazawa, M. Kimura, and S. Nishijima: NRIM Material Strength Data Sheet—Technical Document, NRIM, Tsukuba, 1996, no. 14 (in Japanese).

    Google Scholar 

  15. L. Engel and H. Klingele: An Atlas of Metal Damage, Wolfe Pub. Ltd., London, 1981.

    Google Scholar 

  16. J.P. Bailon, J.I. Dickson, Li Shigiong, and D. Larouche: in Fatigue 90, H. Kitagawa and T. Tanaka, eds., MCEP, Birmingham, United Kingdom, 1990, vol. 3, pp. 1333–43.

    Google Scholar 

  17. A.P. Sutton and R.W. Balluffi: Interface in Crystalline Materials, Oxford University Press, New York, NY, 1995.

    Google Scholar 

  18. J.P. Hirth: Metall. Trans., 1972, vol. 3, pp. 3047–67.

    CAS  Google Scholar 

  19. T.C. Lee, I.M. Robertson, and H.K. Birnbaum: Phil. Mag. A, 1990, vol. 62, pp. 131–53.

    CAS  Google Scholar 

  20. Z. Shen, R.H. Wagoner, and W.A.T. Clark: Acta Metall., 1988, vol. 36, pp. 3231–42.

    Article  CAS  Google Scholar 

  21. Z. Shen, R.H. Wagoner, and W.A.T. Clark: Scripta Metall., 1986, vol. 20, pp. 921–26.

    Article  CAS  Google Scholar 

  22. J.W. Morris, Jr., S.K. Hwang, K.A. Yuschenko, V.I. Belotzerkovetz, and O.G. Kvanevskii: Advances in Cryogenic Engineering Materials, Plenum Press, New York, 1978, vol. 24, pp. 91–102.

    Google Scholar 

  23. Y. Tomota and S. Shibuki: Iron Steel Inst. Jpn. Int., 1990, vol. 30, pp. 663–65.

    CAS  Google Scholar 

  24. H. Tanaka, N. Kondo, K. Fujita, and K. Shibata: Iron Steel Inst. Jpn. Int., 1990, vol. 30, pp. 646–55.

    CAS  Google Scholar 

  25. A.M. Freudenthal: Eng. Fract. Mech., 1974, vol. 6, pp. 775–93.

    Article  CAS  Google Scholar 

  26. O. Umezawa and K. Nagai: National Research Institute for Metals, Tsukuba, Japan, unpublished research, 1997.

    Google Scholar 

  27. H. Kitagawa, S. Takahashi, C.M. Suh, and S. Miyashita: in Fatigue Mechanisms, ASTM STP 675, J.T. Fong, ed., ASTM, Philadelphia, PA, 1978, pp. 420–49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Umezawa, O., Nagai, K. Deformation structure and subsurface fatigue crack generation in austenitic steels at low temperature. Metall Mater Trans A 29, 809–822 (1998). https://doi.org/10.1007/s11661-998-0272-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-998-0272-1

Keywords

Navigation