Skip to main content
Log in

Correlation of microstructure with the hardness and wear resistance of (TiC,SiC)/Ti-6Al-4V surface composites fabricated by high-energy electron-beam irradiation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The correlation of microstructure with the hardness and wear resistance of (TiC,SiC)/Ti-6Al-4V surface composites fabricated by high-energy electron-beam irradiation was investigated in this study. The mixtures of TiC, SiC, or TiC + SiC powders and CaF2 flux were placed on a Ti-6Al-4V substrate, and then an electron beam was irradiated on these mixtures using an electron-beam accelerator. The surface composite layers of 1.2 to 2.1 mm in thickness were formed without defects and contained a large amount (up to 66 vol pct) of precipitates such as TiC and Ti5Si3 in the martensitic matrix. This microstructural modification, including the formation of hard precipitates and a hardened matrix in the surface composite layer, improved the hardness and wear resistance. Particularly in the surface composite fabricated with TiC + SiC powders, the wear resistance was greatly enhanced to a level 25 times higher than that of the Ti alloy substrate, because 66 vol pct of TiC and Ti5Si3 was precipitated homogeneously in the hardened martensitic matrix. These findings suggested that high-energy electron-beam irradiation was useful for the development of Ti-based surface composites with improved hardness and wear properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Boyer, G. Welsch, and E.W. Collings: Material Properties Handbook: Titanium Alloys, ASM INTERNATIONAL, Materials Park, OH, 1994, pp. 347–60.

    Google Scholar 

  2. R.R. Boyer: Mater. Sci. Eng., 1996, vol. A213, pp. 103–14.

    CAS  Google Scholar 

  3. D.E. Alman and J.A. Hawk: Wear, 1999, vol. 236, pp. 629–39.

    Article  Google Scholar 

  4. A. Molinari, G. Straffelini, B. Tesi, and T. Bacci: Wear, 1997, vol. 208, pp. 105–12.

    Article  CAS  Google Scholar 

  5. S. Fukumoto, H. Tsubakino, S. Inoue, L. Liu, M. Terasawa, and T. Mitamura: Mater. Sci. Eng., 1999, vol. A263, pp. 205–09.

    CAS  Google Scholar 

  6. M. Hagiwara and S.-J. Kim: Metals Materials Int., 1998, vol. 4, pp. 141–49.

    Article  CAS  Google Scholar 

  7. C. Hu, H. Xin, L.M. Watson, and T.N. Baker: Acta Mater., 1997, vol. 45, pp. 4311–22.

    Article  CAS  Google Scholar 

  8. C. Badini, M. Bianco, S. Talentino, X.B. Guo, and C. Gianiglio: Appl. Surf. Sci., 1992, vol. 54, pp. 374–80.

    Article  CAS  Google Scholar 

  9. J.C. Oh, D.-K. Choo, and S. Lee: Surf. Coating Technol., 2000, vol. 127, pp. 76–85.

    Article  Google Scholar 

  10. K. Euh, S. Lee, and K. Shin: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 3143–51.

    Article  CAS  Google Scholar 

  11. J.C. Oh, K. Euh, S. Lee, Y. Koo, and N.J. Kim: Scripta Mater., 1998, vol. 39, pp. 1389–94.

    Article  CAS  Google Scholar 

  12. J.C. Oh and S. Lee: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2995–3005.

    Article  CAS  Google Scholar 

  13. J.C. Oh, C.S. Lee, and S. Lee: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 3173–85.

    Article  CAS  Google Scholar 

  14. T.N. Baker, H. Xin, C. Hu, and S. Mridha: Mater. Sci. Technol., 1994, vol. 10, pp. 536–44.

    CAS  Google Scholar 

  15. A.F. Vaisman, S.B. Vasserman, M.G. Golkovskii, V.D. Kedo, and R.A. Salimov: About Surface Hardening by Concentrated Electron Beam at Atmosphere, Budker Institute of Nuclear Physics, Novosibirsk, Russia, 1988, preprint 73-88, pp. 5–31.

    Google Scholar 

  16. L.E. Rehn, S.T. Picraux, and H. Widersich: Surface Alloying by Ion, Electron, and Laser Beams, ASM INTERNATIONAL, Metals Parks, OH, 1987, pp. 1–17.

    Google Scholar 

  17. S.-H. Choo, S. Lee, and S.-J. Kwon: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 3131–41.

    Article  CAS  Google Scholar 

  18. K. Euh, J. Lee, and S. Lee: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2499–2508.

    Article  CAS  Google Scholar 

  19. L. Davis: An Introduction to Welding Fluxes for Mild and Low Alloy Steels, The Welding Institute, Abington, Cambridge, United Kingdom, 1981, pp. 1–16.

    Google Scholar 

  20. M. Bauccio: ASM Engineering Materials Reference Book, 2nd ed., ASM INTERNATIONAL, Metals Park, OH, 1994, pp. 283 and 285.

    Google Scholar 

  21. R.C. Weast: Handbook of Chemistry and Physics 55th, CRC Press, Cleveland, OH, 1974, p. B-77.

    Google Scholar 

  22. T. Tabata and R. Ito: Nucl. Sci. Eng., 1974, vol. 53, pp. 226–39.

    CAS  Google Scholar 

  23. ASTM Standard Practice for Conducting Dry Sand/Rubber Wheel Abrasion Tests, ASTM G65-83, ASTM, Philadelphia, PA, 1989.

  24. Y. Lin, R.H. Zee, and B.A. Chin: Metall. Mater. Trans. A, 1991, vol. 22A, pp. 859–65.

    CAS  Google Scholar 

  25. A.B. Kloosterman, B.J. Kooi, and J.T.M. De Hosson: Acta Mater., 1998, vol. 46, pp. 6205–17.

    Article  CAS  Google Scholar 

  26. B.J. Kooi, M. Kabel, A.B. Kloosterman, and J.T.M. De Hosson: Acta Mater., 1999, vol. 47, pp. 3105–16.

    Article  CAS  Google Scholar 

  27. E.K. Storms: The Refractory Carbides, Academic Press, New York, NY, 1967, pp. 1–17.

    Google Scholar 

  28. P. Jiang, X.L. He, X.X. Li, L.G. Yu, and H.M. Wang: Surf. Coating Technol., 2000, vol. 130, pp. 24–28.

    Article  CAS  Google Scholar 

  29. T.B. Massalski: Binary Alloy Phase Diagram, ASM INTERNATIONAL, Metals Park, OH, 1986, vol. 1, p. 593.

    Google Scholar 

  30. P. Villars, A. Prince, and H. Okamoto: Handbook of Ternary Alloy Phase Diagrams, ASM INTERNATIONAL, Materials Park, OH, 1994, p. 7364.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

OH, J.C., Yun, E. & Lee, S. Correlation of microstructure with the hardness and wear resistance of (TiC,SiC)/Ti-6Al-4V surface composites fabricated by high-energy electron-beam irradiation. Metall Mater Trans A 35, 525–534 (2004). https://doi.org/10.1007/s11661-004-0363-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0363-6

Keywords

Navigation