Skip to main content
Log in

Effects of Ultrasonic Shot Peening and Multi-arc Ion Plating on Microstructure and Properties of TiAlN-Coated Cemented Carbide Materials

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The objective of this work was to evaluate the microstructure, mechanical properties, tribological performance, and corrosion behavior of TiAlN coatings prepared by the ultrasonic shot peening (USSP) pre-treatment of cemented carbide substrate and multi-arc ion plating (MAIP). The TiAlN coatings modified by USSP+MAIP combined surface treatment exhibited the preferred (111) crystal orientation of TiN. The intensity of the TiAlN diffraction peak was lower than that of the TiAlN coating without the USSP pre-treatment. At the same time, the interface of the TiAlN coating after the combined USSP+MAIP surface modification became thicker, the film thickness increased, and the grain size was refined. Compared with the TiAlN coating without the USSP pre-treatment, microhardness and coating-substrate bonding force were significantly improved, having maximal values of 2554 HV0.05 and 38.58 N, respectively. Compared with the un-USSP TiAlN coating, the TiAlN coating modified by the combined USSP+MAIP surface treatment exhibited an abrasive wear mechanism and adhesive wear mechanism, revealing better tribological properties. The electrochemical results showed that the TiAlN coating modified by the combined surface treatment had a higher open-circuit potential, lower corrosion current density, and higher polarization resistance. Due to the increased film thickness and the higher structure density, the modified TiAlN coating exhibited better protection efficiency and higher charge transfer resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

References

  1. V. Sousa, F. Silva, R. Alexandre et al., Study of the Wear Behaviour of TiAlSiN and TiAlN PVD Coated Tools on Milling Operations of Pre-Hardened Tool Steel, Wear, 2021, 476, p 203695.

    Article  CAS  Google Scholar 

  2. Z.Y. Du, Y.Q. Lv, Y. Han et al., Sintering Densification Behavior and Kinetic Mechanism of Nano-Tungsten Powder Prepared by Sol-Spray Drying, Tungsten., 2020, 2(4), p 371–380.

    Article  Google Scholar 

  3. E. Ghasali, Y. Orooji, H. Tahamtan et al., The Effects of Metallic Additives on the Microstructure and Mechanical Properties of WC-Co Cermets Prepared by Microwave Sintering, Ceram. Int., 2021, 46(18), p 29199–29206.

    Article  Google Scholar 

  4. Z.H. Guo, F.M. Deng, L. Zhang et al., Fabrication and Tribological Properties of Textured Diamond Coatings on WC-Co Cemented Carbide Surfaces, Ceram. Int., 2021, 47(4), p 5423–5431.

    Article  CAS  Google Scholar 

  5. R.W. Armstrong, The Hardness and Strength Properties of WC-Co Composites, Materials, 2011, 4(7), p 1287.

    Article  CAS  Google Scholar 

  6. X.Q. Wang, H.L. Guo and B.S. He, Research of Making Technology of Nano-Grained Cemented Carbide, Cemented Carbide, 2003, 20(1), p 1.

    Google Scholar 

  7. B. Nery, C. Otoni and D. Lívio, Development of the 90WC-8Ni-2Cr3C2 Cemented Carbide for Engineering Applications, Int. J. Adv. Manuf. Technol., 2018, 99, p 1653–1660.

    Article  Google Scholar 

  8. R. Naveed, N.A. Mufti, K. Ishfaq et al., Complex taper profile Machining of WC-Co Composite Using Wire Electric Discharge Process: Analysis of Geometrical Accuracy, Cutting Rate, and Surface Quality, Int. J. Adv. Manuf. Technol., 2019, 105(1–4), p 411–423.

    Article  Google Scholar 

  9. A. Ghailane, H. Larhlimi, Y. Tamraoui et al., The Effect of maGnetic Field Configuration on Structural and Mechanical Properties of TiN Coatings Deposited by HiPIMS and dcMS, Surface Coat. Technol., 2020, 404, p 126572.

    Article  CAS  Google Scholar 

  10. H.M. Dong, S. He, X.Z. Wang et al., Study on Conductivity and Corrosion Resistance of N-doped and Cr/N co-Doped DLC Films on Bipolar Plates for PEMFC, Diam. Relat. Mater., 2020, 110, p 108156.

    Article  CAS  Google Scholar 

  11. V. Nunes, F. Silva, M. Andrade et al., Increasing the Lifespan of High-Pressure Die Cast Molds Subjected to Severe Wear, Surf. Coat. Technol., 2017, 332, p 319–331.

    Article  CAS  Google Scholar 

  12. A.B.B. Chaar, L. Rogstrom, M.P. Johansson-Joesaar et al., Microstructural Influence of the Thermal Behavior of Arc Deposited TiAlN Coatings with High Aluminum Content, J. Alloys Compd., 2021, 854, p 157205.

    Article  CAS  Google Scholar 

  13. F.C.S. Vitor, J.G.D.S. Francisco, F.P. Gustavo et al., Characteristics and Wear Mechanisms of TiAlN-Based Coatings for Machining Applications: A Comprehensive Review, Metals, 2021, 11(2), p 260.

    Article  Google Scholar 

  14. R. Jalali, M. Parhizkar, H. Bidadi et al., The Effect of Al content, Substrate Temperature and Nitrogen Flow Rate on Optical Band Gap and Optical Features of Nanostructured TiAlN Thin Films Prepared by Reactive Magnetron Sputtering, Appl. Phys. A Mater. Sci. Process., 2016, 122, p 978.

    Article  Google Scholar 

  15. A. Obrosov, R. Gulyaev, M. Ratzke et al., XPS and AFM Investigations of Ti-Al-N Coatings Fabricated Using DC Magnetron Sputtering at Various Nitrogen Flow Rates and dEposition Temperatures, Metals, 2017, 7(2), p 52.

    Article  Google Scholar 

  16. A.R. Shugurov and M.S. Kazachenok, Mechanical Properties and Tribological Behavior of Magnetron Sputtered TiAlN/TiAl Multilayer Coatings, Surf. Coat. Technol., 2018, 353, p 254–262.

    Article  CAS  Google Scholar 

  17. B.D. Beake, L. Isern, J.L. Endrino et al., Micro-Scale Impact Resistance of Coatings on Hardened Tool Steel and Cemented Carbide, Mater. Lett., 2021, 284, p 129009.

    Article  CAS  Google Scholar 

  18. S.W. Tang, P.Z. Li, D.S. Liu et al., Cutting Performance of a Functionally Graded Cemented Carbide Tool Prepared by Microwave Heating and Nitriding Sintering, High Temp. Mater. Processes (London), 2019, 38, p 582–589.

    Article  CAS  Google Scholar 

  19. K. Lu, Making Strong Nanomaterials Ductile with Gradients, Science, 2014, 345, p 1455–1456.

    Article  CAS  Google Scholar 

  20. J. Chen, L. Zhou, X. Deng et al., Role of Co Content on the Gradient Microstructure Evolution and Mechanical Properties of Bilayer Functionally Graded Cemented Carbides, Mater. Chem. Phys., 2020, 248, p 122910.

    Article  CAS  Google Scholar 

  21. J. Chen, X. Deng, M. Gong et al., Research into Preparation and Properties of Graded Cemented Carbides with Face Center Cubic-Rich Surface Layer, Appl. Surf. Sci., 2016, 380, p 108–113.

    Article  CAS  Google Scholar 

  22. K. Lu and J. Lu, Surface Nanocrystallization (SNC) of Metallic Materials-Presentation of the Concept Behind a New Approach, J. Mater. Sci. Technol., 1999, 15, p 193–197.

    Article  CAS  Google Scholar 

  23. V. Pandey, K. Chattopadhyay, N.C. Santhi Srinivas et al., Role of Ultrasonic Shot Peening on Low Cycle Fatigue Behavior of 7075 Aluminium Alloy, Int. J. Fatigue, 2017, 103, p 426–435.

    Article  CAS  Google Scholar 

  24. T.T. Xia, L.F. Zeng, X.H. Zhang et al., Enhanced Corrosion Resistance of a Cu-10Ni Alloy in a 3.5 wt.% NaCl Solution by Means of Ultrasonic Surface Rolling Treatment, Surface Coat. Technol., 2019, 363, p 390–399.

    Article  CAS  Google Scholar 

  25. X.X. Li, J. Liu, J.B. Liu, S.J. Zhu, Y.X. Yan, X.H. Zhang and T.X. Liang, Corrosion Behaviour of Nanocrystallines Alloy 690 at High-Temperature and High-Pressure in Simulated PWR Secondary Environment, Surf. Topogr. Metrol. Prop., 2021, 9, p 015006.

    Article  CAS  Google Scholar 

  26. J. Liu, C.M. Wang, W.L. Zhang et al., Corrosion Behaviour of Nanocrystallines 304 Stainless Steel in Simulated Secondary Side Environment, Mater. Sci. Technol., 2019, 35(8), p 907–915.

    Article  CAS  Google Scholar 

  27. J. Liu, J.B. Liu, X.H. Zhang et al., Effect of Ultrasonic Surface Rolling Treatment on Corrosion Behavior of Alloy 690, Metals, 2020, 10(7), p 917.

    Article  CAS  Google Scholar 

  28. S.J. Zhu, Y.F. Hu, X.H. Zhang et al., Experimental Investigation on Ultrasonic shot Peening of WC-Co Alloy, Mater. Manuf. Process., 2020, 35(14), p 1576–1583.

    Article  CAS  Google Scholar 

  29. W.P. Tong, N.R. Tao, K. Lu et al., Nitriding Iron at Low Temperature, Science, 2003, 299, p 686–688.

    Article  CAS  Google Scholar 

  30. N. Ao, D.X. Liu, X.H. Zhang et al., Enhanced fatIgue Performance of Modified Plasma Electrolytic Oxidation Coated Ti-6Al-4V Alloy: Effect of Residual Stress and Gradient Nanostructure, Appl. Surf. Sci., 2019, 489, p 595–607.

    Article  CAS  Google Scholar 

  31. Z. Chen, Y.Y. Lian, X. Liu et al., Recent Research and Development of thick CVD Tungsten Coatings for Fusion Application, Tungsten., 2020, 2(1), p 83–93.

    Article  Google Scholar 

  32. J.B. Liu, X.H. Zhang, Z.Y. Cui et al., Effects of Ultrasonic Surface Rolling Processing and Plasma Nitriding on the Fretting Wear Behavior of Inconel 690TT, Surface Coat. Technol., 2020, 402, p 126312.

    Article  CAS  Google Scholar 

  33. L. Ge, T. Na, Z. Lu et al., Influence of the Surface Nanocrystallization on the Gas Nitriding of Ti-6Al-4V Alloy, Appl. Surf. Sci., 2013, 286, p 412–416.

    Article  CAS  Google Scholar 

  34. D. She, Y. Wen, J. Kang et al., Vacuum Tribological Properties of Titanium Enhanced Via Ultrasonic Surface Rolling Processing Pretreatment and Plasma Nitriding, Tribol. Trans., 2018, 61, p 612–620.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study is supported by the National Natural Science Foundation of China [Nos. 51804138 and 51871114], the Science and Technology Project of Education Department of Jiangxi Province [No. GJJ180430], the National Natural Science Foundation of Jiangxi Province [Nos. 20192ACB20003 and 2020BAB204002], the Qingjiang Young Talents Support Program of Jiangxi University of Science and Technology [No. JXUSTQJYX2020014], the Ganzhou Science and Technology Plan Project [No. zxh].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuehui Zhang or Tongxiang Liang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhu, S., Chen, H. et al. Effects of Ultrasonic Shot Peening and Multi-arc Ion Plating on Microstructure and Properties of TiAlN-Coated Cemented Carbide Materials. J. of Materi Eng and Perform 31, 6584–6594 (2022). https://doi.org/10.1007/s11665-022-06740-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06740-5

Keywords

Navigation