Skip to main content
Log in

Numerical simulation of Zn coating solidification

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A numerical model, which simulates nucleation and growth of Zn grains, has been developed in order to describe quantitatively the solidification of Zn coatings during the hot-dipping process. The inputs of the model are the nucleation distribution, which has been measured by electron backscattered diffraction (EBSD), and the dendritic growth kinetics, calculated with an analytical model of a parabolic dendrite tip modified to account for the interactions with the coating interfaces. The model predicts the shapes of the grain envelopes as a function of the grain orientation and the texture induced by growth. Three types of grain envelopes have been evidenced, depending on the angle between the c-axis and the normal to the coating plane. Moreover, it has been shown that growth reinforces the already existing {00.1} nucleation texture, in good agreement with experimental data. The model also predicts the cooling curve, including recalescence, and the grain size. Thus, it is used to describe the effects of Pb additions on solidification. In particular, it has been shown that Pb increases the nucleation undercooling and strongly decreases the density of active nuclei, thus resulting in a much larger grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Strutzenberger and J. Faderl: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 631–46.

    Article  CAS  Google Scholar 

  2. A. Sémoroz, Y. Durandet, and M. Rappaz: Acta Mater., 2001, vol. 49, pp. 529–41.

    Article  Google Scholar 

  3. F. Hinterberger, W. Maschek, and J. Faderl: in Zinc-Based Steel Coating Systems: Production and Performance, F.E. Goodwin, ed., TMS, 1998, pp. 281–92.

  4. W.W. Mullins and R.F. Sekerka: J. Appl. Phys., 1963, vol. 34, pp. 323–29.

    Article  CAS  Google Scholar 

  5. N.J. Wall, J.A. Spittle, and R.D. Jones: 1st Int. Conf. on Zinc Coated Steel Sheet, Zinc Development Association, London, U.K., 1985, pp. C1-C6.

    Google Scholar 

  6. D.I. Cameron, G.J. Harvey, and M.K. Ormay: J. Aust. Inst. Met., 1965, vol. 10, pp. 255–64.

    CAS  Google Scholar 

  7. A. Sémoroz, S. Henry, and M. Rappaz: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 487–95.

    Article  Google Scholar 

  8. D.I. Cameron and G.J. Harvey: 8th Int. Conf. on Hot Dip Galvanizing, Zinc Development Association, London, U.K., 1967, pp. 86–97.

    Google Scholar 

  9. J. Faderl, W. Maschek, and J. Strutzenberger: GALVATECH ’95 Conf. Proc., The Use and Manufacture of Zinc and Zinc Alloy Coated Sheet Products into the 21st Century, ISS, Warrendale, PA, 1995, pp. 675–85.

    Google Scholar 

  10. F.A. Fasoyinu and F. Weinberg: Metall. Mater. Trans. B, 1990, vol. 21B, pp. 549–58.

    CAS  Google Scholar 

  11. R. Gutenberg, J. Lait, and F. Weinberg: Can. Metall. Q., 1990, vol. 29, pp. 307–12.

    CAS  Google Scholar 

  12. Y.-W. Kim and R.S. Patil: 1st Int. Conf. on Zinc Coated Steel Sheet, Zinc Development Association, London, U.K., 1985, pp. D1–5.

    Google Scholar 

  13. A. Sémoroz, L. Strezov, and M. Rappaz: 5th Int. Conf. on Zinc and Zinc Alloy Coated Steel Sheet, M. Lamberights, ed., Stahleisen, Düsseldorf, Germany, 2001, pp. 612–19.

    Google Scholar 

  14. M. Rappaz and C.-A. Gandin: Acta Metall. Mater., 1993, vol. 41, pp. 345–60.

    Article  CAS  Google Scholar 

  15. M. Rappaz, C. Charbon, and R. Sasikumar: Acta Metall. Mater., 1994, vol. 42, pp. 2365–74.

    Article  CAS  Google Scholar 

  16. P. Thévoz, J.-L. Desbiolles, and M. Rappaz: Metall. Mater. Trans. A, 1989, vol. 20A, pp. 311–22.

    Google Scholar 

  17. A. Sémoroz, L. Strezov, and M. Rappaz: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2695–2701.

    Google Scholar 

  18. M. Rappaz, S.A. David, J.M. Vitek, and L.A. Boatner: Metall. Mater. Trans. A, 1990, vol. 21A, pp. 1767–82.

    CAS  Google Scholar 

  19. C.-A. Gandin, M. Rappaz, and R. Tintiller: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 629–35.

    CAS  Google Scholar 

  20. J.D. Hunt: Mater. Sci. Eng., 1984, vol. 65, pp. 75–83.

    Article  CAS  Google Scholar 

  21. B. Giovanola and W. Kurz: Metall. Mater. Trans. A, 1990, vol. 21A, pp. 260–3.

    CAS  Google Scholar 

  22. E. Kaufmann: Dissertation ETH No. 13527, Swiss Federal Institute of Technology, Zürich, Switzerland, 2000, p. 23.

    Google Scholar 

  23. Metals Handbook, Properties and Selection: Irons, Steels and High-Performance Alloys, 10th ed., ASM INTERNATIONAL, Materials Park, OH, 1990, vol. 1, p. 197.

  24. F. Porter: Zinc Handbook, Properties, Processing and Use in Design, Marcel Dekker, New York, USA, 1991, p. 41.

    Google Scholar 

  25. J.L. Murray: Bull. Alloy Phase Diagrams, 1983, vol. 4, pp. 55–73.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sémoroz, A., Strezov, L. & Rappaz, M. Numerical simulation of Zn coating solidification. Metall Mater Trans A 33, 2685–2694 (2002). https://doi.org/10.1007/s11661-002-0390-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0390-0

Keywords

Navigation