Skip to main content

Advertisement

Log in

The effect of grain boundaries on the athermal stress of tantalum and tantalum-tungsten alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The temperature dependence of the yield stress of polycrystalline Ta, Ta-2.47 wt pct W (Ta-2.5W), and Ta-9.80 wt pct W (Ta-10W) was measured to study the effect of grain boundaries and tungsten concentration on athermal strength components. Compression tests were performed over a temperature range from 77 to 1223 K at strain rates of 10−4 and 10−1 s−1. The test results show that the yield stress of Ta becomes independent of temperature above about 400 K, indicating an “athermal” regime. In contrast, the temperature dependence of yield stress was still significant for Ta-10W up to the maximum test temperature. An analysis of the test data using single-crystal data in conjunction with Taylor factors was performed to assess the effect of grain boundaries on the athermal component of flow stress at 600 K. The results indicated that the long-range athermal stress at the yield point due to grain boundaries is approximately 13 to 41 MPa for the study materials and decreases with an increase in tungsten concentration. These results are discussed with regard to constitutive modeling of flow stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.W. Christian: 2nd Int. Conf. on the Strength of Metals and Alloys, American Society for Metals, 1970, vol. 1, pp. 31–69.

  2. W.C. Leslie: Metall. Trans., 1972, vol. 3, pp. 5–26.

    CAS  Google Scholar 

  3. R.J. Arsenault: Treatise Mater. Sci. Technol., 1975, vol. 6, pp. 1–99.

    CAS  Google Scholar 

  4. Erwin Pink and Richard J. Arsenault: Progr. Mater. Sci., 1979, vol. 24, pp. 1–50.

    Article  Google Scholar 

  5. J.W. Christian: Metall. Trans. A, 1983, vol. 14A, pp. 1237–55.

    CAS  Google Scholar 

  6. G. Tayler: Progr. Mater. Sci., 1992, vol. 36, pp. 29–61.

    Article  Google Scholar 

  7. M.S. Duesbery and V. Vitek: Acta Mater. 1998, vol. 46 (2), pp. 1481–92.

    Article  CAS  Google Scholar 

  8. B.L. Mordike, K.D. Rogauch, and A.A. Braithwaite: Met. Sci J., 1970, vol. 4, pp. 37–40.

    CAS  Google Scholar 

  9. G.C. Das and R.J. Arsenault: Scripta Metall., 1968, vol. 2, pp. 495–500.

    Article  CAS  Google Scholar 

  10. T.E. Mitchell and W.A. Spitzig: Acta Metall., 1965, vol. 13, pp. 1169–79.

    Article  CAS  Google Scholar 

  11. W.A. Spitzig and T.E. Mitchell: Acta Metall., 1966, vol. 14, pp. 1311–23.

    Article  CAS  Google Scholar 

  12. W. Wasserbäch: Phys. Status Solidi (a), 1987, vol. 104, pp. 63–78.

    Article  Google Scholar 

  13. W. Wasserbäch: Phys. Status Solid: (a), 1995, vol. 147, pp. 417–46.

    Article  Google Scholar 

  14. K.G. Hoge and A.K. Mukherjee: J. Mater. Sci., 1977, vol. 12, pp. 1666–72.

    Article  CAS  Google Scholar 

  15. Shuh Rong Chen and George T. Gray: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1559–598.

    Google Scholar 

  16. M.A. Meyers, Y.-J. Chen, F.D.S. Marquis, and D.S. Kim: Metall. Mater. Trans. A, 1995, vol. 26A (10), pp. 2493–2501.

    CAS  Google Scholar 

  17. Rajeev Kapoor and Sia Nemat-Nasser: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 815–23.

    CAS  Google Scholar 

  18. C.L. Briant and D.H. Lassila: J. Eng. Mater. Technol. (Trans. ASME), 1999, vol. 62, pp. 172–77.

    Google Scholar 

  19. C.L. Briant, R.H. Batcheler, W. Gourdin, and D.H. Lassila: in Tantalum, E. Chen, A. Crowson, E. Lavernia, W. Ebihara, and P. Kumar, TMS, Warrendale, PA, 1996, pp. 191–201.

    Google Scholar 

  20. M.M. LeBlanc, D. Lassila, and C.S. Preuss: High Temperature Compression Test System, UCRL-ID, University of California, Lawrence Livermore National Laboratory, Livermore, CA, 2001.

    Google Scholar 

  21. W. Köster: Metallkd., 1948, vol. 39, pp. 1–9.

    Google Scholar 

  22. P.E. Armstrong and H.L. Brown: Trans. TMS-AIME, 1964, vol. 230, pp. 962–66.

    CAS  Google Scholar 

  23. S.W.H. Yih and C.T. Wang: Tungsten-Sources, Metallurgy, Properties, and Applications, Plenum Press, New York, NY, 1979,

    Google Scholar 

  24. D.J. Steinberg: Equation of State and Strength Properties of Selected Materials, UCRL-MA-106439-Change 1, Lawrence Livermore National Laboratory, Livermore, CA, 1996.

    Google Scholar 

  25. S.I. Wright: J. Comp. Assoc. Microsc., 1993, vol. 5 (3), pp. 207–21.

    Google Scholar 

  26. A.J. Schwartz, D.H. Lassila, and M.M. LeBlanc: Mater. Sci. Eng., 1998, vol. A244, pp. 178–90.

    CAS  Google Scholar 

  27. P. Gilormini, B. Bacroix, and J.J. Jonas: Acta Metall. Mater., 1988, vol. 36(2), pp. 231–56.

    Article  CAS  Google Scholar 

  28. R. Becker: Scripta Metall. Mater., 1995, vol. 32, pp. 2051–54.

    Article  CAS  Google Scholar 

  29. M.A. Meyers: Dynamic Behavior of Materials, John Wiley & Sons, Inc., New York, NY, 1994, p. 340.

    Google Scholar 

  30. P.S. Follansbee and U.F. Kocks: Acta Metall. Mater., 1988, vol. 36 (1), pp. 81–93.

    Article  Google Scholar 

  31. W.H. Gourdin and D.H. Lassila: Acta Metall. Mater., 1991, vol. 39 (10), pp. 2337–48.

    Article  CAS  Google Scholar 

  32. F.J. Zerilli and R.W. Armstrong: J. Appl. Phys., 1987, vol. 61, p. 1816.

    Article  CAS  Google Scholar 

  33. F.J. Zerilli and R.W. Armstrong: in Shock Compression of Condensed Matter—1989, S.C. Schmidt, J.N. Johnson, and L.W. Davison, eds., American Institute of Physics, New York, 1990, p. 357.

    Google Scholar 

  34. F.J. Zerilli and R.W. Armstrong: J. Appl. Phys., 1990, vol. 68, p. 1580.

    Article  CAS  Google Scholar 

  35. F.J. Zerilli and R.W. Armstrong: Acta Metall. Mater., 1992, vol. 40, p. 1803.

    Article  CAS  Google Scholar 

  36. S.J. Basinski and Z.S. Basinski: Dislocations in Solids, F.R.N. Nabarro, ed., North Holland Publishing Co. (Amsterdam, New York, Oxford), 1979, vol. 4, pp. 263–361.

    Google Scholar 

  37. R.L. Fleischer: Acta Metall., 1963, vol. 11, p. 202.

    Google Scholar 

  38. J.P. Hirth and J. Lothe: Theory of Dislocations, 2nd ed., John Wiley & Sons, New York, NY, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lassila, D.H., Goldberg, A. & Becker, R. The effect of grain boundaries on the athermal stress of tantalum and tantalum-tungsten alloys. Metall Mater Trans A 33, 3457–3464 (2002). https://doi.org/10.1007/s11661-002-0333-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0333-9

Keywords

Navigation