Skip to main content
Log in

Effect of Tungsten Content and Compression on Microstructure and Texture Evolution in Liquid Phase Sintered Heavy Alloy

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The crystallographic texture development in uniaxial compression tests of tungsten heavy alloys was systematically investigated by varying the tungsten content of the alloys. It was observed that the b.c.c. tungsten particles had a characteristic double fiber texture consisting of <111> and <100> fibers, which was irrespective of the alloy composition under consideration. The effect of the composition was shown mainly in relation to the relative proportion of <100> and <111> fiber. It was observed that the <100> fiber strengthens with increasing tungsten content, although the <111> fiber remained as the strongest fiber in all the five compositions considered in the present work. The strengthening of <100> fibers with an increased tungsten content was understood by performing self-consistent texture simulations in combination with a lattice corotation scheme to account for the role of neighboring grain orientations in texture evolution. A physical justification of the role of the neighbors is given by the shift of the orientations around the [110]-[411] divergent line. The random fluctuations that originate from the neighbors displace the orientation from the above of divergent downwards, which in turn leads to the displaced grains rotating in the direction of the <100> corner.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6:
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Y. Li, K. Hu, X. Li, X. Ai, and S. Qu: Mater. Sci. Eng. A., 2013, vol. 573, pp. 245–52.

    Article  CAS  Google Scholar 

  2. A. Upadhyaya: Mater. Chem. Phys., 2001, vol. 67, pp. 101–10.

    Article  CAS  Google Scholar 

  3. R. Luo, D. Huang, M. Yang, E. Tang, M. Wang, and L. He: Mater. Sci. Eng., A., 2016, vol. 675, pp. 262–70.

    Article  CAS  Google Scholar 

  4. A. Bose, R. Sadangi, and R.M. German: Suppl. Proc., 2012, vol. 1, pp. 453–65.

    Article  Google Scholar 

  5. U.R. Kiran, A. Panchal, M. Sankaranarayana, G.V.S.N. Rao, and T.K. Nandy: Mater. Sci. Eng. A., 2015, vol. 640, pp. 82–90.

    Article  Google Scholar 

  6. U.R. Kiran, A.S. Rao, M. Sankaranarayana, and T.K. Nandy: Int. J. Refract Metal Hard Mater., 2012, vol. 33, pp. 113–21.

    Article  Google Scholar 

  7. W.E. Gurwell: Mater. Manuf. Process., 1994, vol. 9, pp. 1115–26.

    Article  CAS  Google Scholar 

  8. U.R. Kiran, A. Panchal, M. Sankaranarayana, and T.K. Nandy: Int. J. Refract Metal Hard Mater., 2013, vol. 37, pp. 1–11.

    Article  CAS  Google Scholar 

  9. L. Ding, D.P. Xiang, Y.Y. Li, C. Li, and J.B. Li: Int. J. Refract Metal Hard Mater., 2012, vol. 33, pp. 65–9.

    Article  CAS  Google Scholar 

  10. A. Mondal, A. Upadhyaya, and D. Agrawal: Int. J. Refract Metal Hard Mater., 2010, vol. 28, pp. 597–600.

    Article  CAS  Google Scholar 

  11. F. He, J. Yang, T. Lei, and C. Gu: Appl. Surf. Sci., 2007, vol. 253, pp. 7591–8.

    Article  CAS  Google Scholar 

  12. C. Li, S. Ma, X. Liu, J. Li, and G. Le: Int. J. Refract Metal Hard Mater., 2018, vol. 77, pp. 113–9.

    Article  CAS  Google Scholar 

  13. A. Iveković, M.L. Montero-Sistiaga, K. Vanmeensel, J.-P. Kruth, and J. Vleugels: Int. J. Refract Metal Hard Mater., 2019, vol. 82, pp. 23–30.

    Article  Google Scholar 

  14. A. Upadhyaya and R.M. German: Metall. Mater. Trans. A., 1998, vol. 29A, pp. 2631–8.

    Article  CAS  Google Scholar 

  15. D.-K. Kim, S. Lee, and H. Song: Metall. Mater. Trans. A., 1998, vol. 29A, pp. 1057–69.

    Article  CAS  Google Scholar 

  16. Z. Wei, J. Yu, S. Hu, and Y. Li: Int. J. Impact Eng., 2000, vol. 24, pp. 747–58.

    Article  Google Scholar 

  17. N.K. Çalişkan, N. Durlu, and Ş Bor: Int. J. Refract Metal Hard Mater., 2013, vol. 36, pp. 260–4.

    Article  Google Scholar 

  18. N. Senthilnathan, A.R. Annamalai, and G. Venkatachalam: Mater. Sci. Eng. A., 2018, vol. 710, pp. 66–73.

    Article  CAS  Google Scholar 

  19. S. Yadav and K.T. Ramesh: Mater. Sci. Eng. A., 1995, vol. 203, pp. 140–53.

    Article  Google Scholar 

  20. F. Jinglian, G. Xing, Q. Meigui, L. Tao, L. Shukui, and T. Jiamin: Rare Metal Mater. Eng., 2009, vol. 38, pp. 2069–74.

    Article  Google Scholar 

  21. J. Das, G.A. Rao, S.K. Pabi, M. Sankaranarayana, and B. Sarma: Mater. Sci. Eng. A., 2011, vol. 528, pp. 6235–47.

    Article  CAS  Google Scholar 

  22. W.-S. Lee, C.-F. Lin, and S.-T. Chang: J. Mater. Process. Technol., 2000, vol. 100, pp. 123–30.

    Article  Google Scholar 

  23. W.-S. Lee, G.-L. Xiea, and C.-F. Lin: Mater. Sci. Eng. A., 1998, vol. 257, pp. 256–67.

    Article  Google Scholar 

  24. Q. Wei, T. Jiao, K.T. Ramesh, E. Ma, L.J. Kecskes, L. Magness, R. Dowding, V.U. Kazykhanov, and R.Z. Valiev: Acta Mater., 2006, vol. 54, pp. 77–87.

    CAS  Google Scholar 

  25. Y. Yu, C. Ren, and W. Zhang: Int. J. Refract Metal Hard Mater., 2018, vol. 76, pp. 149–57.

    Article  CAS  Google Scholar 

  26. Z.-H. Zhang, F.-C. Wang, S.-K. Li, and L. Wang: Mater. Sci. Eng. A., 2006, vol. 435–436, pp. 632–7.

    Article  Google Scholar 

  27. S. Suwas and R.K. Ray: Crystallographic Texture of Materials, Springer, New York, 2014.

    Book  Google Scholar 

  28. S. Li and I.J. Beyerlein: Modell. Simul. Mater. Sci. Eng., 2005, vol. 13, p. 509.

    Article  Google Scholar 

  29. C. Deng, S.F. Liu, J.L. Ji, X.B. Hao, Z.Q. Zhang, and Q. Liu: J. Mater. Process. Technol., 2014, vol. 214, pp. 462–9.

    Article  CAS  Google Scholar 

  30. E. ASTM: West Conshohocken, PA: ASTM International, 2000, pp. 98–105.

  31. F. Bachmann and R. Hielscher: H. Schaeben. Solid State Phenom., 2010, vol. 160, pp. 63–8.

    Article  CAS  Google Scholar 

  32. C.N. Tomé and R.A. Lebensohn: Los Alamos National Laboratory (USA) and Universidad Nacional de Rosario (Argentina).

  33. C.N. Tomé: Modell. Simul. Mater. Sci. Eng., 1999, vol. 7, p. 723.

    Article  Google Scholar 

  34. J.W. Hutchinson: Proc. R. Soc. Lond. A., 1976, vol. 348, pp. 101–27.

    Article  CAS  Google Scholar 

  35. R.A. Lebensohn and G.R. Canova: Acta Mater., 1997, vol. 45, pp. 3687–94.

    Article  CAS  Google Scholar 

  36. H. Li, F. Larsson, M.H. Colliander, and M. Ekh: Mater. Sci. Eng. A., 2021, vol. 799, p. 140325.

    Article  CAS  Google Scholar 

  37. R.A. Lebensohn, P.A. Turner, and G.R. Canova: Comput. Mater. Sci., 1997, vol. 9, pp. 229–36.

    Article  CAS  Google Scholar 

  38. R.A. Lebensohn and C.N. Tomé: Acta Metall. Mater., 1993, vol. 41, pp. 2611–24.

    Article  CAS  Google Scholar 

  39. N.P. Gurao and S. Suwas: Metall. Mater. Trans. A., 2017, vol. 48A, pp. 809–27.

    Article  Google Scholar 

  40. C. Mondal, A.K. Singh, A.K. Mukhopadhyay, and K. Chattopadhyay: Mater. Sci. Eng. A., 2013, vol. 577, pp. 87–100.

    Article  CAS  Google Scholar 

  41. J.-H. Cho, A.D. Rollett, and K.H. Oh: Metall. Mater. Trans. A., 2004, vol. 35A, pp. 1075–86.

    Article  CAS  Google Scholar 

  42. P. Gilormini, B. Bacroix, and J.J. Jonas: Acta Metall., 1988, vol. 36, pp. 231–56.

    Article  CAS  Google Scholar 

  43. R. Becker: Acta Metall. Mater., 1991, vol. 39, pp. 1211–30.

    Article  Google Scholar 

  44. C.N. Tomé, C.T. Necker, and R.A. Lebensohn: Metall. Mater. Trans. A., 2002, vol. 33A, pp. 2635–48.

    Article  Google Scholar 

  45. R.M. German, P. Suri, and S.J. Park: J. Mater. Sci., 2009, vol. 44, pp. 1–39.

    Article  CAS  Google Scholar 

  46. J.M. Rosenberg and H.R. Piehler: Metall. Trans., 1971, vol. 2, pp. 257–9.

    Article  CAS  Google Scholar 

  47. I.L. Dillamore, H. Katoh, and K. Haslam: in Texture, vol. 1, 1970.

  48. T.B. Britton and J.L.R. Hickey: in IOP Conference Series: Materials Science and Engineering, vol. 304, 2018, p. 12003.

  49. A.M. Korsunsky, K.E. Wells, and P.J. Withers: Scripta Mater., 1998, vol. 39, pp. 1705–12.

    Article  CAS  Google Scholar 

  50. E.A. Calnan and C.J.B. Clews: Lond. Edinb. Dublin Philos. Mag. J. Sci., 1951, vol. 42, pp. 616–35.

    Article  CAS  Google Scholar 

  51. S.-W. Jung, S.-J.L. Kang, D.-K. Kim, S. Lee, and J.-W. Noh: Metall. Mater. Trans. A., 1999, vol. 30A, pp. 2027–35.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the powder metallurgy lab, texture lab and ACMS IIT Kanpur for facilitating texture and EBSD measurements.

Conflict of interest

The authors have not conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anish Upadhyaya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Gurao, N.P. & Upadhyaya, A. Effect of Tungsten Content and Compression on Microstructure and Texture Evolution in Liquid Phase Sintered Heavy Alloy. Metall Mater Trans A 53, 1253–1266 (2022). https://doi.org/10.1007/s11661-021-06586-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06586-x

Navigation