Skip to main content

Advertisement

Log in

Life’s Essential 8 and osteoporosis in adults aged 50 years or older: data from the National Health and Nutrition Examination Survey

  • Original Article
  • Published:
Archives of Osteoporosis Aims and scope Submit manuscript

Abstract

Summary

In this cross-sectional study, we examined the association between Life’s Essential 8 (LE8) and bone mineral density (BMD) as well as osteoporosis risk among adults aged 50 and over. The findings of this study revealed that higher LE8 scores were associated with higher BMD and reduced osteoporosis risk.

Purpose

The objective of the present study was to evaluate the association between Life’s Essential 8 (LE8) and bone mineral density (BMD), as well as osteoporosis risk, in adults aged 50 years or over.

Methods

This cross-sectional study recruited individuals who were 50 years old or older from the National Health and Nutrition Examination Survey. LE8 scores were evaluated and calculated according to the scoring algorithm based on the American Heart Association recommendations, which were further categorized into health behaviors (LE8-HB) and health factors (LE8-HF) scores. Furthermore, the present study utilized multivariate linear regression models to examine the correlations between BMD and LE8 scores. In addition, ordinal logistic regression models were employed to determine the associations between the risk of osteoporosis (normal BMD, osteopenia, and osteoporosis) and LE8 scores.

Results

The final analysis included a total of 2910 participants, whose mean age was 64.49 ± 9.28 years. LE8 and LE8-HF scores exhibited a negative association with BMD and a positive association with osteoporosis risk in unadjusted models. Nevertheless, after adjustment for covariates, LE8 and LE8-HB scores exhibited a positive association with BMD and a negative association with osteoporosis risk, regardless of age, sex, or menopausal status.

Conclusions

Scoring systems based on multiple lifestyle and behavior factors, similar to LE8, have the potential to become a novel option and be used for osteoporosis risk assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data were extracted from NHANES database. The detailed information was provided on the NHANES website (URL: https://www.cdc.gov/nchs/nhanes/index.htm).

Abbreviations

ALT:

Alanine aminotransferase

ANOVA:

Analysis of variance

AST:

Aspartate aminotransferase

BMD:

Bone mineral density

BMI:

Body mass index

CI:

Confidence interval

CVD:

Cardiovascular disease

CVH:

Cardiovascular health

FBG:

Fasting blood glucose

FN:

Femoral neck

HB:

Health behavior

HbA1c:

Hemoglobin A1c

HDL:

High-density lipoprotein

HDL-C:

High-density lipoprotein cholesterol

HEI:

Healthy Eating Index

HF:

Health factor

LE8:

Life’s Essential 8

NCHS:

National Center for Health Statistics

NHANES:

National Health and Nutrition Examination Survey

OR:

Odds ratio

OST:

Osteoporosis Self-Assessment Tool

SCORE:

Simple Calculated Osteoporosis Risk Estimation

SD:

Standard deviation

TC:

Total cholesterol

VIF:

Variance inflation factor

References

  1. Compston JE, McClung MR, Leslie WD (2019) Osteoporosis. Lancet 393(10169):364–76. https://doi.org/10.1016/s0140-6736(18)32112-3

    Article  CAS  PubMed  Google Scholar 

  2. Melton LJ 3rd, Atkinson EJ, O’Connor MK, O’Fallon WM, Riggs BL (1998) Bone density and fracture risk in men. J Bone Miner Res 13(12):1915–23. https://doi.org/10.1359/jbmr.1998.13.12.1915

    Article  PubMed  Google Scholar 

  3. Melton LJ 3rd, Chrischilles EA, Cooper C, Lane AW, Riggs BL (1992) Perspective. How many women have osteoporosis? J Bone Miner Res 7(9):1005–10. https://doi.org/10.1002/jbmr.5650070902

    Article  PubMed  Google Scholar 

  4. Willers C, Norton N, Harvey NC et al (2022) Osteoporosis in Europe: a compendium of country-specific reports. Arch Osteoporos 17(1):23. https://doi.org/10.1007/s11657-021-00969-8

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yu F, Xia W (2019) The epidemiology of osteoporosis, associated fragility fractures, and management gap in China. Arch Osteoporos 14(1):32. https://doi.org/10.1007/s11657-018-0549-y

    Article  MathSciNet  PubMed  Google Scholar 

  6. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res 22(3):465–75. https://doi.org/10.1359/jbmr.061113

    Article  PubMed  Google Scholar 

  7. LeBoff MS, Greenspan SL, Insogna KL et al (2022) The clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int 33(10):2049–2102. https://doi.org/10.1007/s00198-021-05900-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nuti R, Brandi ML, Checchia G et al (2019) Guidelines for the management of osteoporosis and fragility fractures. Intern Emerg Med 14(1):85–102. https://doi.org/10.1007/s11739-018-1874-2

    Article  PubMed  Google Scholar 

  9. Tang Y, Liu J, Feng Z et al (2022) Nocturnal sleep duration and bone mineral density: a cross-sectional study of the National Health and Nutrition Examination Survey (NHANES) 2007–2014. BMC Endocr Disord 22(1):333. https://doi.org/10.1186/s12902-022-01259-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tang Y, Wang S, Yi Q, Xia Y, Geng B (2021) Sleep pattern and bone mineral density: a cross-sectional study of National Health and Nutrition Examination Survey (NHANES) 2017–2018. Arch Osteoporos 16(1):157. https://doi.org/10.1007/s11657-021-01025-1

    Article  PubMed  Google Scholar 

  11. Howe TE, Shea B, Dawson LJ et al (2011) Exercise for preventing and treating osteoporosis in postmenopausal women. Cochrane Database Syst Rev 7:Cd000333. https://doi.org/10.1002/14651858.CD000333.pub2

    Article  Google Scholar 

  12. Premaor MO, Pilbrow L, Tonkin C, Parker RA, Compston J (2010) Obesity and fractures in postmenopausal women. J Bone Miner Res 25(2):292–7. https://doi.org/10.1359/jbmr.091004

    Article  PubMed  Google Scholar 

  13. Cosman F, de Beur SJ, LeBoff MS et al (2014) Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int 25(10):2359–2381. https://doi.org/10.1007/s00198-014-2794-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Buijsse B, Simmons RK, Griffin SJ, Schulze MB (2011) Risk assessment tools for identifying individuals at risk of developing type 2 diabetes. Epidemiol Rev 33(1):46–62. https://doi.org/10.1093/epirev/mxq019

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ogunmoroti O, Michos ED, Aronis KN et al (2018) Life’s Simple 7 and the risk of atrial fibrillation: The Multi-Ethnic Study of Atherosclerosis. Atherosclerosis 275:174–181. https://doi.org/10.1016/j.atherosclerosis.2018.05.050

    Article  CAS  PubMed  Google Scholar 

  16. Howard G, Cushman M, Blair J et al (2023) Comparative discrimination of Life’s Simple 7 and Life’s Essential 8 to stratify cardiovascular risk: is the added complexity worth it? Circulation. https://doi.org/10.1161/circulationaha.123.065472

    Article  PubMed  Google Scholar 

  17. Lloyd-Jones DM, Allen NB, Anderson CAM et al (2022) Life’s essential 8: updating and enhancing the American Heart Association’s construct of cardiovascular health: a presidential advisory from the American Heart Association. Circulation 146(5):e18–e43. https://doi.org/10.1161/cir.0000000000001078

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lloyd-Jones DM, Hong Y, Labarthe D et al (2010) Defining and setting national goals for cardiovascular health promotion and disease reduction: the American Heart Association’s strategic Impact Goal through 2020 and beyond. Circulation 121(4):586–613. https://doi.org/10.1161/circulationaha.109.192703

    Article  PubMed  Google Scholar 

  19. Law MR, Hackshaw AK (1997) A meta-analysis of cigarette smoking, bone mineral density and risk of hip fracture: recognition of a major effect. Bmj 315(7112):841–6. https://doi.org/10.1136/bmj.315.7112.841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Smoking prevalence and attributable disease burden in 195 countries and territories, 1990–2015: a systematic analysis from the Global Burden of Disease Study 2015. (2017) Lancet 389 (10082): 1885–906. https://doi.org/10.1016/s0140-6736(17)30819-x.

  21. Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT (2012) Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet 380(9838):219–29. https://doi.org/10.1016/s0140-6736(12)61031-9

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang X, Ma H, Li X et al (2023) Association of cardiovascular health with life expectancy free of cardiovascular disease, diabetes, cancer, and dementia in UK adults. JAMA Intern Med 183(4):340–349. https://doi.org/10.1001/jamainternmed.2023.0015

    Article  PubMed  Google Scholar 

  23. Gao J, Liu Y, Ning N et al (2023) Better Life’s Essential 8 is associated with lower risk of diabetic Kidney Disease: A Community-Based Study. J Am Heart Assoc 12(17):e029399. https://doi.org/10.1161/jaha.123.029399

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhang R, Wu M, Zhang W et al (2023) Association between Life’s Essential 8 and biological ageing among US adults. J Transl Med 21(1):622. https://doi.org/10.1186/s12967-023-04495-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. CDC (2023) NCHS Ethics Review Board (ERB) Approval. National Center for Health Statistics. https://www.cdc.gov/nchs/nhanes/irba98.htm. Accessed 01 October 2023.

  26. Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E (2008) FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int 19(4):385–97. https://doi.org/10.1007/s00198-007-0543-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Looker AC, Borrud LG, Hughes JP, Fan B, Shepherd JA, Melton LJ 3rd (2012) Lumbar spine and proximal femur bone mineral density, bone mineral content, and bone area: United States, 2005–2008. Vital Health Stat 11(251):1–132

    Google Scholar 

  28. Looker AC, Orwoll ES, Johnston CC Jr et al (1997) Prevalence of low femoral bone density in older U.S. adults from NHANES III. J Bone Miner Res 12(11):1761–8. https://doi.org/10.1359/jbmr.1997.12.11.1761

    Article  CAS  PubMed  Google Scholar 

  29. CDC (2023) Body Composition Procedures Manual. National Health and Nutrition Examination Survey. https://wwwn.cdc.gov/nchs/data/nhanes/2017-2018/manuals/Body_Composition_Procedures_Manual_2018.pdf. Accessed 01 October 2023.

  30. Krebs-Smith SM, Pannucci TE, Subar AF et al (2018) Update of the Healthy Eating Index: HEI-2015. J Acad Nutr Diet 118(9):1591–1602. https://doi.org/10.1016/j.jand.2018.05.021

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tański W, Kosiorowska J, Szymańska-Chabowska A (2021) Osteoporosis — risk factors, pharmaceutical and non-pharmaceutical treatment. Eur Rev Med Pharmacol Sci 25(9):3557–66. https://doi.org/10.26355/eurrev_202105_25838

    Article  PubMed  Google Scholar 

  32. Xiao PL, Cui AY, Hsu CJ et al (2022) Global, regional prevalence, and risk factors of osteoporosis according to the World Health Organization diagnostic criteria: a systematic review and meta-analysis. Osteoporos Int 33(10):2137–2153. https://doi.org/10.1007/s00198-022-06454-3

    Article  PubMed  Google Scholar 

  33. Akinwande O, Dikko HG, Agboola S (2015) Variance inflation factor: as a condition for the inclusion of suppressor variable(s) in regression analysis. Open J Stat 05:754–67. https://doi.org/10.4236/ojs.2015.57075

    Article  Google Scholar 

  34. Tang Y, Peng B, Liu J, Liu Z, Xia Y, Geng B (2022) Systemic immune-inflammation index and bone mineral density in postmenopausal women: a cross-sectional study of the national health and nutrition examination survey (NHANES) 2007–2018. Front Immunol 13:975400. https://doi.org/10.3389/fimmu.2022.975400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Larsson SC, Burgess S (2021) Causal role of high body mass index in multiple chronic diseases: a systematic review and meta-analysis of Mendelian randomization studies. BMC Med 19(1):320. https://doi.org/10.1186/s12916-021-02188-x

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ma M, Feng Z, Liu X, Jia G, Geng B, Xia Y (2021) The saturation effect of body mass index on bone mineral density for people over 50 years old: a cross-sectional study of the US population. Front Nutr 8:763677. https://doi.org/10.3389/fnut.2021.763677

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pan R, Ji H, Xu Y et al (2023) The association between prediabetes and bone mineral density: a meta-analysis. Diabetes Metab Res Rev 39(7):e3691. https://doi.org/10.1002/dmrr.3691

    Article  CAS  PubMed  Google Scholar 

  38. Ma L, Oei L, Jiang L et al (2012) Association between bone mineral density and type 2 diabetes mellitus: a meta-analysis of observational studies. Eur J Epidemiol 27(5):319–332. https://doi.org/10.1007/s10654-012-9674-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ghadiri M, Soltani M, Rajabzadeh-Dehkordi M et al (2023) The relation between dietary quality and healthy eating index with bone mineral density in osteoporosis: a case-control study. BMC Musculoskelet Disord 24(1):584. https://doi.org/10.1186/s12891-023-06704-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fan Y, Ni S, Zhang H (2022) Association between Healthy Eating Index-2015 total and component food scores with osteoporosis in middle-aged and older Americans: a cross-sectional study with U.S. National Health and Nutrition Examination Survey. Osteoporos Int 33(4):921–9. https://doi.org/10.1007/s00198-021-06247-0

    Article  PubMed  Google Scholar 

  41. Ochs-Balcom HM, Hovey KM, Andrews C et al (2020) Short sleep is associated with low bone mineral density and osteoporosis in the women’s health initiative. J Bone Miner Res 35(2):261–268. https://doi.org/10.1002/jbmr.3879

    Article  CAS  PubMed  Google Scholar 

  42. Hejazi K, Askari R, Hofmeister M (2022) Effects of physical exercise on bone mineral density in older postmenopausal women: a systematic review and meta-analysis of randomized controlled trials. Arch Osteoporos 17(1):102. https://doi.org/10.1007/s11657-022-01140-7

    Article  PubMed  Google Scholar 

  43. Kanis JA, Johnell O, Oden A et al (2005) Smoking and fracture risk: a meta-analysis. Osteoporos Int 16(2):155–162. https://doi.org/10.1007/s00198-004-1640-3

    Article  CAS  PubMed  Google Scholar 

  44. Egger P, Duggleby S, Hobbs R, Fall C, Cooper C (1996) Cigarette smoking and bone mineral density in the elderly. J Epidemiol Community Health 50(1):47–50. https://doi.org/10.1136/jech.50.1.47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Crandall CJ (2015) Risk assessment tools for osteoporosis screening in postmenopausal women: a systematic review. Curr Osteoporos Rep 13(5):287–301. https://doi.org/10.1007/s11914-015-0282-z

    Article  MathSciNet  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of Chongqing (CSTB2022NSCQ-MSX0792).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Hao or Zhenming Hu.

Ethics declarations

Ethics approval

The ethics review board of the National Center for Health Statistics has approved the NHANES (URL: https://www.cdc.gov/nchs/nhanes/irba98.htm).

Consent to participate

Informed consent was obtained from all study participants. The detailed information was provided on the NHANES website (URL: https://www.cdc.gov/nchs/nhanes/index.htm).

Consent for publication

Not applicable.

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yuchen Tang and Wei Dong contributed equally to this work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 976 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Dong, W., Shen, J. et al. Life’s Essential 8 and osteoporosis in adults aged 50 years or older: data from the National Health and Nutrition Examination Survey. Arch Osteoporos 19, 13 (2024). https://doi.org/10.1007/s11657-024-01368-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11657-024-01368-5

Keywords

Navigation