Skip to main content
Log in

Network Pharmacology and Experimental Validation to Explore Mechanism of Tetrahydropalmatine on Acute Myocardial Ischemia

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To explore the potential molecular mechanism of tetrahydropalmatine (THP) on acute myocardial ischemia (AMI).

Methods

First, the target genes of THP and AMI were collected from SymMap Database, Traditional Chinese Medicine Database and Analysis Platform, and Swiss Target Prediction, respectively. Then, the overlapping target genes between THP and AMI were evaluated for Grene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and protein-protein interaction network analysis. The binding affinity between the protein and THP was assessed by molecular docking. Finally, the protective effects of THP on AMI model and oxygen and glucose deprivation (OGD) model of H9C2 cardiomyocyte were explored and the expression levels of target genes were detected by RT-qPCR in vivo and in vitro.

Results

MMP9, PPARG, PTGS2, SLC6A4, ESR1, JAK2, GSK3B, NOS2 and AR were recognized as hub genes. The KEGG enrichment analysis results revealed that the potential target genes of THP were involved in the regulation of PPAR and hormone pathways. THP improved the cardiac function, as well as alleviated myocardial cell damage. Furthermore, THP significantly decreased the RNA expression levels of MMP9, PTGS2, SLC6A4, GSK3B and ESR1 (P<0.05, P<0.01) after AMI. In vitro, THP significantly increased H9C2 cardiomyocyte viability (P<0.05, P<0.01) and inhibited the RNA expression levels of PPARG, ESR1 and AR (P<0.05, P<0.01) in OGD model.

Conclusions

THP could improve cardiac function and alleviate myocardial injury in AMI. The underlying mechanism may be inhibition of inflammation, the improvement of energy metabolism and the regulation of hormones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson JL, Morrow DA. Acute myocardial infarction. N Engl J Med 2017;376:2053–2064.

    Article  CAS  PubMed  Google Scholar 

  2. Alexander KP, Newby LK, Armstrong PW, Cannon CP, Gibler WB, Rich MW, et al. Acute coronary care in the elderly, part II: ST-segment-elevation myocardial infarction: a scientific statement for healthcare professionals from the American Heart Association Council on Clinical Cardiology: in collaboration with the Society of Geriatric Cardiology. Circulation 2007;115:2570–2589.

    Article  PubMed  Google Scholar 

  3. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics-2020 update: A report report from the American Heart Association. Circulation 2020;141:e139–e596.

    Article  PubMed  Google Scholar 

  4. Marzilli M, Crea F, Morrone D, Bonow RO, Brown DL, Camici PG, et al. Myocardial ischemia: from disease to syndrome. Int J Cardiol 2020;314:32–35.

    Article  PubMed  Google Scholar 

  5. Torp MK, Vaage J, Stenslokken KO. Mitochondria-derived damage-associated molecular patterns and inflammation in the ischemic-reperfused heart. Acta Physiol (Oxf) 2023;237:e13920.

    Article  CAS  PubMed  Google Scholar 

  6. Fuentes-Antras J, Picatoste B, Ramirez E, Egido J, Tunon J, Lorenzo O. Targeting metabolic disturbance in the diabetic heart. Cardiovasc Diabetol 2015;14:17.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zuurbier CJ, Bertrand L, Beauloye CR, Andreadou I, Ruiz-Meana M, Jespersen NR, et al. Cardiac metabolism as a driver and therapeutic target of myocardial infarction. J Cell Mol Med 2020;24:5937–5954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu Y, Yin HJ, Shi DZ, Chen KJ. Chinese herb and formulas for promoting blood circulation and removing blood stasis and antiplatelet therapies. Evid Based Complement Alternat Med 2012;2012:184503.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chen S. Research progress on chemical constituents and pharmacological effects of Corydalis rhizoma. Inf Tradit Chin Med (Chin) 2021;38(7):78–82.

    Google Scholar 

  10. Bing T, Tianji K, Jingli J, Shuming H, Ming T. Protective effect and mechanism of total alkaloids of Corydalis yanhusuo on acute myocardial ischemia in canine. Res Pract Chin Med 2020;34(2):31–39.

    Google Scholar 

  11. Wu L, Ling H, Li L, Jiang L, He M. Beneficial effects of the extract from Corydalis yanhusuo in rats with heart failure following myocardial infarction. J Pharm Pharmacol 2007;59:695–701.

    Article  CAS  PubMed  Google Scholar 

  12. Zhou J, Li D. Pharmacological effects of l-tetrahydropalmatine and its congeners on the cardiovascular ducts. Chin Pharmacol Bull (Chin) 1992;1992:253–256.

    Google Scholar 

  13. Han Y, Zhang W, Tang Y, Bai W, Yang F, Xie L, et al. l-tetrahydropalmatine, an active component of Corydalis yanhusuo W.T. Wang, protects against myocardial ischaemia-reperfusion injury in rats. PLoS One 2012;7:e38627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Qing Min, Shu SJ, Wu JL, Liu C, Liu T. Protective effects of dl-tetrahydropalmatine on experimental myocardial ischemia in rats. Chin J Primary Med Pharm (Chin) 2001;5:46–47.

    Google Scholar 

  15. Wang X, Wang ZY, Zheng JH, Li S. TCM network pharmacology: a new trend towards combining computational, experimental and clinical approaches. Chin J Nat Med 2021;19:1–11.

    PubMed  Google Scholar 

  16. Pinzi L, Rastelli G. Molecular docking: shifting paradigms in drug discovery. Int J Mol Sci 2019;20:4331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu Y, Zhang F, Yang K, Fang S, Bu D, Li H et al. SymMap: an integrative database of traditional Chinese medicine enhanced by symptom mapping. Nucleic Acids Res 2019;47:D1110–D1117.

    Article  PubMed  Google Scholar 

  18. Zhang Y, Sha R, Wang K, Li H, Yan B, Zhou N. Protective effects of tetrahydropalmatine against ketamine-induced learning and memory injury via antioxidative, anti-inflammatory and anti-apoptotic mechanisms in mice. Mol Med Rep 2018;17:6873–6880.

    CAS  PubMed  Google Scholar 

  19. Zhang J, Liu J, Gao S, Lin W, Gao P, Gao K, et al. Antiapoptosis and antifibrosis effects of Qishen Granules on heart failure rats via Hippo pathway. Biomed Res Int 2019;2019:1642575.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mahtta D, Sudhakar D, Koneru S, Silva GV, Alam M, Virani SS, et al. Targeting inflammation after myocardial infarction. Curr Cardiol Rep 2020;22:110.

    Article  PubMed  Google Scholar 

  21. Moreira DM, da Silva RL, Vieira JL, Fattah T, Lueneberg ME, Gottschall CA. Role of vascular inflammation in coronary artery disease: potential of anti-inflammatory drugs in the prevention of atherothrombosis. Inflammation and anti-inflammatory drugs in coronary artery disease. Am J Cardiovasc Drugs 2015;15:1–11.

    Article  CAS  PubMed  Google Scholar 

  22. Grosser T, Ricciotti E, FitzGerald GA. The cardiovascular pharmacology of nonsteroidal anti-Inflammatory drugs. Trends Pharmacol Sci 2017;38:733–748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xiao S, Zhou Y, Wu Q, Liu Q, Chen M, Zhang T, et al. FCER1G and PTGS2 serve as potential diagnostic biomarkers of acute myocardial infarction based on integrated bioinformatics analyses. DNA Cell Biol 2021;40:1064–1075.

    Article  CAS  PubMed  Google Scholar 

  24. Ge ZW, Zhu XL, Wang BC, Hu JL, Sun JJ, Wang S, et al. MicroRNA-26b relieves inflammatory response and myocardial remodeling of mice with myocardial infarction by suppression of MAPK pathway through binding to PTGS2. Int J Cardiol 2019;280:152–159.

    Article  PubMed  Google Scholar 

  25. Iyer RP, Jung M, Lindsey ML. MMP-9 signaling in the left ventricle following myocardial infarction. Am J Physiol Heart Circ Physiol 2016;311:H190–H198.

    Article  PubMed  PubMed Central  Google Scholar 

  26. DeLeon-Pennell KY, Tian Y, Zhang B, Cates CA, Iyer RP, Cannon P. et al. CD36 is a matrix metalloproteinase-9 substrate that stimulates neutrophil apoptosis and removal during cardiac remodeling. Circ Cardiovasc Genet 2016;9:14–25.

    Article  CAS  PubMed  Google Scholar 

  27. Becirovic-Agic M, Chalise U, Daseke MJ, 2nd, Konfrst S, Salomon JD, Mishra PK. et al. Infarct in the heart: what’s MMP-9 got to do with it? Biomolecules 2021;11:491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jaswal JS, Keung W, Wang W, Ussher JR, Lopaschuk GD. Targeting fatty acid and carbohydrate oxidation—a novel therapeutic intervention in the ischemic and failing heart. Biochim Biophys Acta 2011;1813:1333–1350.

    Article  CAS  PubMed  Google Scholar 

  29. Finck BN. The PPAR regulatory system in cardiac physiology and disease. Cardiovasc Res 2007;73:269–277.

    Article  CAS  PubMed  Google Scholar 

  30. Barlaka E, Galatou E, Mellidis K, Ravingerova T, Lazou A. Role of pleiotropic properties of peroxisome proliferator-activated receptors in the heart: focus on the nonmetabolic effects in cardiac protection. Cardiovasc Ther 2016;34:37–48.

    Article  CAS  PubMed  Google Scholar 

  31. Cao R, Dong Y, Kural KC. Integrating literature-based knowledge database and expression data to explore molecular pathways connecting PPARG and myocardial infarction. PPAR Res 2020;2020:1892375.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wagner KD, Wagner N. PPARs and myocardial infarction. Int J Mol Sci 2020;21:9436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shen ZX, Yang QZ, Li C, Du LJ, Sun XN, Liu Y, et al. Myeloid peroxisome proliferator-activated receptor gamma deficiency aggravates myocardial infarction in mice. Atherosclerosis 2018;274:199–205.

    Article  CAS  PubMed  Google Scholar 

  34. Fliegner D, Westermann D, Riad A, Schubert C, Becher E, Fielitz J, et al. Up-regulation of PPARgamma in myocardial infarction. Eur J Heart Fail 2008;10:30–38.

    Article  CAS  PubMed  Google Scholar 

  35. Graham DJ, Ouellet-Hellstrom R, MaCurdy TE, Ali F, Sholley C, Worrall C, et al. Risk of acute myocardial infarction, stroke, heart failure, and death in elderly Medicare patients treated with rosiglitazone or pioglitazone. JAMA 2010;304:411–418.

    Article  CAS  PubMed  Google Scholar 

  36. Erdmann E, Charbonnel B, Wilcox RG, Skene AM, Massi-Benedetti M, Yates J, et al. Pioglitazone use and heart failure in patients with type 2 diabetes and preexisting cardiovascular disease: data from the PROactive study (PROactive 08). Diabetes Care 2007;30:2773–2778.

    Article  CAS  PubMed  Google Scholar 

  37. Sharma AK, Thanikachalam PV, Bhatia S. The signaling interplay of GSK-3beta in myocardial disorders. Drug Discov Today 2020;25:633–641.

    Article  CAS  PubMed  Google Scholar 

  38. Ghaderi S, Alidadiani N, Dilaver N, Heidari HR, Parvizi R, Rahbarghazi R, et al. Role of glycogen synthase kinase following myocardial infarction and ischemia-reperfusion. Apoptosis 2017;22:887–897.

    Article  CAS  PubMed  Google Scholar 

  39. Wagner C, Tillack D, Simonis G, Strasser RH, Weinbrenner C. Ischemic post-conditioning reduces infarct size of the in vivo rat heart: role of PI3-K, mTOR, GSK-3beta, and apoptosis. Mol Cell Biochem 2010;339:135–147.

    Article  CAS  PubMed  Google Scholar 

  40. Yusuf AM, Qaisar R, Al-Tamimi AO, Jayakumar MN, Woodgett JR, Koch WJ, et al. Cardiomyocyte-GSK-3beta deficiency induces cardiac progenitor cell proliferation in the ischemic heart through paracrine mechanisms. J Cell Physiol 2022;237:1804–1817.

    Article  CAS  PubMed  Google Scholar 

  41. Hirotani S, Zhai P, Tomita H, Galeotti J, Marquez JP, Gao S, et al. Inhibition of glycogen synthase kinase 3beta during heart failure is protective. Circ Res 2007;101:1164–1174.

    Article  CAS  PubMed  Google Scholar 

  42. Mehta LS, Beckie TM, DeVon HA, Grines CL, Krumholz HM, Johnson MN, et al. Acute myocardial infarction in women: a scientific statement from the American Heart Association. Circulation 2016;133:916–947.

    Article  CAS  PubMed  Google Scholar 

  43. DeLeon-Pennell KY, Lindsey ML. Somewhere over the sex differences rainbow of myocardial infarction remodeling: hormones, chromosomes, inflammasome. Expert Rev Proteomics 2019;16:933–940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Babiker FA, Lips DJ, Delvaux E, Zandberg P, Janssen BJ, Prinzen F, et al. Oestrogen modulates cardiac ischaemic remodelling through oestrogen receptor-specific mechanisms. Acta Physiol (Oxf) 2007;189:23–31.

    Article  CAS  PubMed  Google Scholar 

  45. Cavasin MA, Sankey SS, Yu AL, Menon S, Yang XP. Estrogen and testosterone have opposing effects on chronic cardiac remodeling and function in mice with myocardial infarction. Am J Physiol Heart Circ Physiol 2003;284:H1560–1569.

    Article  CAS  PubMed  Google Scholar 

  46. Mammadova-Bach E, Mauler M, Braun A, Duerschmied D. Autocrine and paracrine regulatory functions of platelet serotonin. Platelets 2018;29:541–548.

    Article  CAS  PubMed  Google Scholar 

  47. Ni W, Watts SW. 5-hydroxytryptamine in the cardiovascular system: focus on the serotonin transporter (SERT). Clin Exp Pharmacol Physiol 2006;33:575–583.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Zhang J conceived and designed the study. Lin PL, Ren P, Chen JL, He P, Cao BY and Li QW performed the experiments. Lin PL and Zheng CH performed the statistical analyses. Lin PL and Li QW drafted the manuscript. Zhang J, Wang W and Cao JL revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jian Zhang.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Supported by the National Natural Science Foundation of China (No. 82004095) and the Fundamental Research Funds for the Central Universities (No. 2021-JYB-XJSJJ031)

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Pl., Cao, Jl., Ren, P. et al. Network Pharmacology and Experimental Validation to Explore Mechanism of Tetrahydropalmatine on Acute Myocardial Ischemia. Chin. J. Integr. Med. 29, 1087–1098 (2023). https://doi.org/10.1007/s11655-023-3644-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-023-3644-x

Keywords

Navigation