Skip to main content
Log in

Targeting Inflammation After Myocardial Infarction

  • Management of Acute Coronary Syndromes (H Jneid, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Inflammation plays a key role in clearing cellular debris and recovery after acute myocardial infarction (AMI). Dysregulation of or prolonged inflammation may result in adverse cardiac remodeling and major adverse clinical events (MACE). Several pre-clinical studies and moderate sized clinical trials have investigated the role of immunomodulation in improving clinical outcomes in patients with AMI.

Recent Findings

Clinical data from the Canakinumab Atherothrombosis Outcome (CANTOS) and Colchicine Cardiovascular Outcomes Trial (COLCOT) have provided encouraging results among patients with AMI. Several other clinical and pre-clinical trials have brought about the prospect of modulating inflammation at various junctures of the inflammatory cascade including inhibition of complement cascade, interleukins, and matrix metalloproteinases.

Summary

In patients with AMI, modulation of residual inflammation via various inflammatory pathways and mediators may hold promise for further reducing MACE. Learning from current data and understanding the nuances of immunomodulation in AMI are key for future trials and before widespread dissemination of such therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol. 2017;70(1):1–25.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Reed GW, Rossi JE, Cannon CP. Acute myocardial infarction. Lancet. 2017;389(10065):197–210.

    Article  PubMed  Google Scholar 

  3. Hausenloy DJ, Yellon DM. Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J Clin Invest. 2013;123(1):92–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Frangogiannis NG. Cell biological mechanisms in regulation of the post-infarction inflammatory response. Curr Opin Physiol. 2018;1:7–13.

    Article  PubMed  Google Scholar 

  5. •• Prabhu SD, Frangogiannis NG. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ Res. 2016;119(1):91–112 State of the art review paper outlining the role of information in cardiac repair after AMI.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Huang S, Frangogiannis NG. Anti-inflammatory therapies in myocardial infarction: failures, hopes and challenges. Br J Pharmacol. 2018;175(9):1377–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Puhl SL, Steffens S. Neutrophils in post-myocardial infarction inflammation: damage versus resolution? Front Cardiovasc Med. 2019;6:25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. French BA, Holmes JW. Implications of scar structure and mechanics for post-infarction cardiac repair and regeneration. Exp Cell Res. 2019;376(1):98–103.

    Article  CAS  PubMed  Google Scholar 

  9. Ong SB, Hernández-Reséndiz S, Crespo-Avilan GE, Mukhametshina RT, Kwek XY, Cabrera-Fuentes HA, et al. Inflammation following acute myocardial infarction: multiple players, dynamic roles, and novel therapeutic opportunities. Pharmacol Ther. 2018;186:73–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Frangogiannis NG. The extracellular matrix in myocardial injury, repair, and remodeling. J Clin Invest. 2017;127(5):1600–12.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Thackeray JT, Hupe HC, Wang Y, Bankstahl JP, Berding G, Ross TL, et al. Myocardial inflammation predicts remodeling and neuroinflammation after myocardial infarction. J Am Coll Cardiol. 2018;71(3):263–75.

    Article  CAS  PubMed  Google Scholar 

  12. Rienks M, Papageorgiou AP. Novel regulators of cardiac inflammation: matricellular proteins expand their repertoire. J Mol Cell Cardiol. 2016;91:172–8.

    Article  CAS  PubMed  Google Scholar 

  13. Mezzaroma E, Toldo S, Farkas D, Seropian IM, Van Tassell BW, Salloum FN, et al. The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse. Proc Natl Acad Sci. 2011;108(49):19725–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling—concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. J Am Coll Cardiol. 2000;35(3):569–82.

    Article  CAS  PubMed  Google Scholar 

  15. Bujak M, Dobaczewski M, Chatila K, Mendoza LH, Li N, Reddy A, et al. Interleukin-1 receptor type I signaling critically regulates infarct healing and cardiac remodeling. Am J Pathol. 2008;173(1):57–67.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Westman PC, Lipinski MJ, Luger D, Waksman R, Bonow RO, Wu E, et al. Inflammation as a driver of adverse left ventricular remodeling after acute myocardial infarction. J Am Coll Cardiol. 2016;67(17):2050–60.

    Article  PubMed  Google Scholar 

  17. Eggers KM, Lindahl B. Prognostic biomarkers in acute coronary syndrome: risk stratification beyond cardiac troponins. Curr Cardiol Rep. 2017;19(4):29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ridker PM, Rifai N, Clearfield M, Downs JR, Weis SE, Miles JS, et al. Measurement of C-reactive protein for the targeting of statin therapy in the primary prevention of acute coronary events. N Engl J Med. 2001;344:1959–65.

    Article  CAS  PubMed  Google Scholar 

  19. Mani P, Puri R, Schwartz GG, Nissen SE, Shao M, Kastelein JJP, et al. Association of initial and serial C-reactive protein levels with adverse cardiovascular events and death after acute coronary syndrome: a secondary analysis of the VISTA-16 trial. JAMA Cardiol. 2019;4(4):314–20.

    Article  PubMed  PubMed Central  Google Scholar 

  20. James SK, Armstrong P, Barnathan E, Califf R, Lindahl B, Siegbahn A, et al. Troponin and c-reactive protein have different relations to subsequent mortality and myocardial infarction after acute coronary syndrome: a GUSTO-IV substudy. J Am Coll Cardiol. 2003;41:916–24.

    Article  CAS  PubMed  Google Scholar 

  21. He L, Tang X, Ling W, Chen W, Chen Y. Early C-reactive protein in the prediction of long-term outcomes after acute coronary syndromes: a meta-analysis of longitudinal studies. Heart. 2010;96(5):339–46.

    Article  CAS  PubMed  Google Scholar 

  22. Smith SJ, Bos G, Esseveld MR, Van Eijk HG, Gerbrandy J. Acute-phase proteins from the liver and enzymes from myocardial infarction; a quantitative relationship. Clin Chim Acta. 1977;81:75–85.

    Article  CAS  PubMed  Google Scholar 

  23. Morrow DA, Rifai N, Antman EM, Weiner DL, McCabe CH, Cannon CP, et al. C-reactive protein is a potent predictor of mortality independently of and in combination with troponin T in acute coronary syndromes: a TIMI 11A substudy. Thrombolysis in myocardial infarction. J Am Coll Cardiol. 1998;31(7):1460–5.

    Article  CAS  PubMed  Google Scholar 

  24. Hagstrom E, James SK, Bertilsson M, Becker RC, Himmelmann A, Husted S, et al. Growth differentiation factor-15 level predicts major bleeding and cardiovascular events in patients with acute coronary syndromes: results from the PLATO study. Eur Heart J. 2016;37:1325–33.

    Article  PubMed  CAS  Google Scholar 

  25. Bonaca MP, Morrow DA, Braunwald E, Cannon CP, Jiang S, Breher S, et al. Growth differentiation factor-15 and risk of recurrent events in patients stabilized after acute coronary syndrome: observations from PROVE IT-TIMI 22. Arterioscler Thromb Vasc Biol. 2011;31:203–10.

    Article  CAS  PubMed  Google Scholar 

  26. O’Donoghue ML, Morrow DA, Cannon CP, Jarolim P, Desai NR, Sherwood MW. Multicenter risk stratification in patients with acute myocardial infarction. J Am Heart Assoc. 2016;5:e002586.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Armstrong PW, Bett N, Brieger D, Chew D, Dick R, Farshid A, et al. Pexelizumab for acute ST-elevation myocardial infarction in patients undergoing primary percutaneous coronary intervention: a randomized controlled trial. J Am Med Assoc. 2007;297(1):43–51.

    Article  CAS  Google Scholar 

  28. Morton AC, Rothman AM, Greenwood JP, Gunn J, Chase A, Clarke B, et al. The effect of interleukin-1 receptor antagonist therapy on markers of inflammation in non-ST elevation acute coronary syndromes: the MRC-ILA Heart Study. Eur Heart J. 2015;36(6):377–84.

    Article  CAS  PubMed  Google Scholar 

  29. Abbate A, Trankle CR, Buckley LF, Lipinski MJ, Appleton D, Kadariya D, et al. Interleukin-1 blockade inhibits the acute inflammatory response in patients with ST-segment–elevation myocardial infarction. J Am Heart Assoc. 2020;9(5):e014941.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. •• Ridker PM, Everett BM, Thuren T, JG MF, Chang WH, Ballantyne C, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. New Engl J Med. 2017;377(12):1119–31 CANTOS trial presenting contemporary data on the use of canakinumab in patients with AMI and demonstrating the modest lowering of MACE.

    Article  CAS  PubMed  Google Scholar 

  31. Ridker PM, Everett BM, Pradhan A, MacFadyen JG, Solomon DH, Zaharris E, et al. Low-dose methotrexate for the prevention of atherosclerotic events. N Engl J Med. 2019;380(8):752–62.

    Article  CAS  PubMed  Google Scholar 

  32. •• Tardif JC, Kouz S, Waters DD, Bertrand OF, Diaz R, Maggioni AP, et al. Efficacy and safety of low-dose colchicine after myocardial infarction. New Engl J Med. 2019;381(26):2497–505 COLCOT trial presenting most recent clinical data demonstrating clinical benefit of low-dose colchicine in patients with recent AMI.

    Article  CAS  PubMed  Google Scholar 

  33. Carroll MB, Haller C, Smith C. Short-term application of tocilizumab during myocardial infarction (STAT-MI). Rheumatol Int. 2018;38(1):59–66.

    Article  CAS  PubMed  Google Scholar 

  34. • Cerisano G, Buonamici P, Valenti R, Sciagra R, Raspanti S, Santini A, et al. Early short-term doxycycline therapy in patients with acute myocardial infarction and left ventricular dysfunction to prevent the ominous progression to adverse remodelling: the TIPTOP trial. Eur Heart J. 2014;35(3):184–91 Contemporary trial demonstrating positive effects of doxycycline on LV function recovery after STEMI.

    Article  CAS  PubMed  Google Scholar 

  35. Abbate A, Van Tassell BW, Christopher S, Abouzaki NA, Sonnino C, Oddi C, et al. Effects of prolastin C (plasma-derived alpha-1 antitrypsin) on the acute inflammatory response in patients with ST-segment elevation myocardial infarction (from the VCU-alpha 1-RT pilot study). Am J Cardiol. 2015;115(1):8–12.

    Article  CAS  PubMed  Google Scholar 

  36. Ottani F, Latini R, Staszewsky L, La Vecchia L, Locuratolo N, Sicuro M, et al. Cyclosporine A in reperfused myocardial infarction: the multicenter, controlled, open-label CYCLE trial. J Am Coll Cardiol. 2016;67(4):365–74.

    Article  CAS  PubMed  Google Scholar 

  37. Homeister JW, Lucchesi BR. Complement activation and inhibition in myocardial ischemia and reperfusion injury. Annu Rev Pharmacol Toxicol. 1994;34(1):17–40.

    Article  CAS  PubMed  Google Scholar 

  38. Mann DL. Innate immunity and the failing heart: the cytokine hypothesis revisited. Circ Res. 2015;116(7):1254–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Thielmann M, Marggraf G, Neuhäuser M, Forkel J, Herold U, Kamler M, et al. Administration of C1-esterase inhibitor during emergency coronary artery bypass surgery in acute ST-elevation myocardial infarction. Eur J Cardiothorac Surg. 2006;30(2):285–93.

    Article  PubMed  Google Scholar 

  40. Fattouch K, Bianco G, Speziale G, Sampognaro R, Lavalle C, Guccione F, et al. Beneficial effects of C1 esterase inhibitor in ST-elevation myocardial infarction in patients who underwent surgical reperfusion: a randomised double-blind study. Eur J Cardiothorac Surg. 2007;32(2):326–32.

    Article  PubMed  Google Scholar 

  41. De Zwaan C, Kleine AH, Diris JH, Glatz JF, Wellens HJ, Strengers PF, et al. Continuous 48-h C1-inhibitor treatment, following reperfusion therapy, in patients with acute myocardial infarction. Eur Heart J. 2002;23(21):1670–7.

    Article  PubMed  CAS  Google Scholar 

  42. Emmens RW, Baylan U, Juffermans LJ, Karia RV, Ylstra B, Wouters D, et al. Endogenous C1-inhibitor production and expression in the heart after acute myocardial infarction. Cardiovasc Pathol. 2016;25(1):33–9.

    Article  CAS  PubMed  Google Scholar 

  43. Granger CB, Mahaffey KW, Weaver WD, Theroux P, Hochman JS, Filloon TG, et al. Pexelizumab, an anti-C5 complement antibody, as adjunctive therapy to primary percutaneous coronary intervention in acute myocardial infarction: the COMplement inhibition in myocardial infarction treated with angioplasty (COMMA) trial. Circulation. 2003;108(10):1184–90.

    Article  CAS  PubMed  Google Scholar 

  44. Mahaffey KW, Granger CB, Nicolau JC, Ruzyllo W, Weaver WD, Theroux P, et al. Effect of pexelizumab, an anti-C5 complement antibody, as adjunctive therapy to fibrinolysis in acute myocardial infarction: the COMPlement inhibition in myocardial infarction treated with thromboLYtics (COMPLY) trial. Circulation. 2003;108(10):1176–83.

    Article  CAS  PubMed  Google Scholar 

  45. Smith PK, Shernan SK, Chen JC, Carrier M, Verrier ED, Adams PX, et al. Effects of C5 complement inhibitor pexelizumab on outcome in high-risk coronary artery bypass grafting: combined results from the PRIMO-CABG I and II trials. J Thorac Cardiovasc Surg. 2011;142(1):89–98.

    Article  CAS  PubMed  Google Scholar 

  46. Deten A, Volz HC, Briest W, Zimmer HG. Cardiac cytokine expression is upregulated in the acute phase after myocardial infarction. Experimental studies in rats. Cardiovasc Res. 2002;55(2):329–40.

    Article  CAS  PubMed  Google Scholar 

  47. Van Tassell BW, Varma A, Salloum FN, Das A, Seropian IM, Toldo S, et al. Interleukin-1 trap attenuates cardiac remodeling after experimental acute myocardial infarction in mice. J Cardiovasc Pharmacol. 2010;55(2):117–22.

    Article  PubMed  CAS  Google Scholar 

  48. Abbate A, Van Tassell BW, Seropian IM, Toldo S, Robati R, Varma A, et al. Interleukin-1β modulation using a genetically engineered antibody prevents adverse cardiac remodelling following acute myocardial infarction in the mouse. Eur J Heart Fail. 2010;12(4):319–22.

    Article  CAS  PubMed  Google Scholar 

  49. Abbate A, Kontos MC, Grizzard JD, Biondi-Zoccai GG, Van Tassell BW, Robati R, et al. Interleukin-1 blockade with anakinra to prevent adverse cardiac remodeling after acute myocardial infarction (Virginia Commonwealth University Anakinra Remodeling Trial [VCU-ART] Pilot study). Am J Cardiol. 2010;105(10):1371–7.

    Article  CAS  PubMed  Google Scholar 

  50. Abbate A, Van Tassell BW, Biondi-Zoccai G, Kontos MC, Grizzard JD, Spillman DW, et al. Effects of interleukin-1 blockade with anakinra on adverse cardiac remodeling and heart failure after acute myocardial infarction [from the Virginia Commonwealth University-Anakinra Remodeling Trial (2)(VCU-ART2) pilot study]. Am J Cardiol. 2013;111(10):1394–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Everett BM, Cornel JH, Lainscak M, Anker SD, Abbate A, Thuren T, et al. Anti-inflammatory therapy with canakinumab for the prevention of hospitalization for heart failure. Circulation. 2019;139(10):1289–99.

    Article  CAS  PubMed  Google Scholar 

  52. Chan ES, Cronstein BN. Molecular action of methotrexate in inflammatory diseases. Arthritis Res Ther. 2002;4(4):266–73.

    Article  Google Scholar 

  53. Nidorf SM, Eikelboom JW, Budgeon CA, Thompson PL. Low-dose colchicine for secondary prevention of cardiovascular disease. J Am Coll Cardiol. 2013;61:404–10.

    Article  CAS  PubMed  Google Scholar 

  54. Pope RM, Tschopp J. The role of interleukin-1 and the inflammasome in gout: implications for therapy. Arthritis Rheum. 2007;56(10):3183–8.

    Article  CAS  PubMed  Google Scholar 

  55. Ravelli RB, Gigant B, Curmi PA, Jourdain I, Lachkar S, Sobel A, et al. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature. 2004;428(6979):198–202.

    Article  CAS  PubMed  Google Scholar 

  56. Yudkin JS, Kumari M, Humphries SE, Mohamed-Ali V. Inflammation, obesity, stress and coronary heart disease: is interleukin-6 the link? Atherosclerosis. 2000;148:209–14.

    Article  CAS  PubMed  Google Scholar 

  57. Schieffer B, Selle T, Hilfiker A, Hilfiker-Kleiner D, Grote K, Tietge UJF, et al. Impact of interleukin-6 on plaque development and morphology in experimental atherosclerosis. Circulation. 2004;110:3493–500.

    Article  CAS  PubMed  Google Scholar 

  58. Ammirati E, Cannistraci CV, Cristell NA, Vecchio V, Palini AG, Tornvall P, et al. Identification and predictive value of interleukin-6+ interleukin-10+ and interleukin-6- interleukin-10+ cytokine patterns in ST-elevation acute myocardial infarction. Circ Res. 2012;111(10):1336–48.

    Article  CAS  PubMed  Google Scholar 

  59. Mihara M, Hashizume M, Yoshida H, Suzuki M, Shiina M. IL-6/IL-6 receptor system and its role in physiological and pathological conditions. Clin Sci. 2012;122(4):143–59.

    Article  CAS  Google Scholar 

  60. Schindler R, Mancilla J, Endres S, Ghorbani R, Clark SC, and Dinarello CA. Correlations and interactions in the production of interleukin-6 (IL-6), IL-1, and tumor necrosis factor (TNF) in human blood mononuclear cells: IL-6 suppresses IL-1 and TNF. Blood. 1990;75:40–47.

  61. Gu J, Zhu H, Zhu D, Li M, Xiao M, Yan D, et al. VWF, CXCL8 and IL6 might be potential druggable genes for acute coronary syndrome (ACS). Comput Biol Chem. 2019;83:107125.

    Article  CAS  PubMed  Google Scholar 

  62. Narazaki M, Tanaka T, Kishimoto T. The role and therapeutic targeting of IL-6 in rheumatoid arthritis. Expert Rev Clin Immunol. 2017;13(6):535–51.

    Article  CAS  PubMed  Google Scholar 

  63. Kleveland O, Kunszt G, Bratlie M, Ueland T, Broch K, Holte E, et al. Effect of a single dose of the interleukin-6 receptor antagonist tocilizumab on inflammation and troponin T release in patients with non-ST-elevation myocardial infarction: a double-blind, randomized, placebo-controlled phase 2 trial. Eur Heart J. 2016;37(30):2406–13.

    Article  CAS  PubMed  Google Scholar 

  64. Holte E, Kleveland O, Ueland T, Kunszt G, Bratlie M, Broch K, et al. Effect of interleukin-6 inhibition on coronary microvascular and endothelial function in myocardial infarction. Heart. 2017;103(19):1521–7.

    Article  CAS  PubMed  Google Scholar 

  65. Anstensrud AK, Woxholt S, Sharma K, Broch K, Bendz B, Aakhus S, et al. Rationale for the ASSAIL-MI-trial: a randomised controlled trial designed to assess the effect of tocilizumab on myocardial salvage in patients with acute ST-elevation myocardial infarction (STEMI). Open Heart. 2019;6(2):e001108.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Monden Y, Kubota T, Inoue T, Tsutsumi T, Kawano S, Ide T, et al. Tumor necrosis factor-α is toxic via receptor 1 and protective via receptor 2 in a murine model of myocardial infarction. Am J Phys Heart Circ Phys. 2007;293(1):H743–53.

    CAS  Google Scholar 

  67. Sia YT, Parker TG, Tsoporis JN, Liu P, Adam A, Rouleau JL. Long-term effects of carvedilol on left ventricular function, remodeling, and expression of cardiac cytokines after large myocardial infarction in the rat. J Cardiovasc Pharmacol. 2002;39(1):73–87.

    Article  CAS  PubMed  Google Scholar 

  68. Padfield GJ, Din JN, Koushiappi E, Mills NL, Robinson SD, Cruden NL, et al. Cardiovascular effects of tumour necrosis factor α antagonism in patients with acute myocardial infarction: a first in human study. Heart. 2013;99(18):1330–5.

    Article  CAS  PubMed  Google Scholar 

  69. Chung ES, Packer M, Lo KH, Fasanmade AA, Willerson JT. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-α, in patients with moderate-to-severe heart failure: results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation. 2003;107(25):3133–40.

    Article  CAS  PubMed  Google Scholar 

  70. Fingleton B. Matrix metalloproteinases as regulators of inflammatory processes. Biochimica et Biophysica Acta (BBA)-molecular. Cell Res. 2017;1864(11):2036–42.

    CAS  Google Scholar 

  71. Miller M, Cannon CP, Murphy SA, Qin J, Ray KK, Braunwald E, et al. Impact of triglyceride levels beyond low-density lipoprotein cholesterol after acute coronary syndrome in the PROVE IT-TIMI 22 trial. J Am Coll Cardiol. 2008;51(7):724–30.

    Article  CAS  PubMed  Google Scholar 

  72. Cannon CP, Steinberg BA, Murphy SA, Mega JL, Braunwald E. Meta-analysis of cardiovascular outcomes trials comparing intensive versus moderate statin therapy. J Am Coll Cardiol. 2006;48(3):438–45.

    Article  CAS  PubMed  Google Scholar 

  73. Cholesterol Treatment Trialists’ (CTT) Collaboration, Baigent C, Blackwell L, Holland LE, Reith C, Bhala N, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376(9753):1670–81.

    Article  CAS  Google Scholar 

  74. Cannon CP, Blazing MA, Giugliano RP, McCagg A, White JA, Theroux P, et al. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med. 2015;372(25):2387–97.

    Article  CAS  PubMed  Google Scholar 

  75. Qamar A, Giugliano RP, Bohula EA, Park J, Jarolim P, Murphy SA, et al. Biomarkers and clinical cardiovascular outcomes with ezetimibe in the IMPROVE-IT trial. J Am Coll Cardiol. 2019;74(8):1057–68.

    Article  CAS  PubMed  Google Scholar 

  76. Steg PG, Szarek M, Bhatt DL, Bittner VA, Brégeault M, Dalby AJ, et al. Effect of alirocumab on mortality after acute coronary syndromes. Circulation. 2019;140(2):103–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tropeano F, Leoncini M, Toso A, Maioli M, Dabizzi L, Biagini D, et al. Impact of rosuvastatin in contrast-induced acute kidney injury in the elderly: post hoc analysis of the PRATO-ACS trial. J Cardiovasc Pharmacol Ther. 2016;21(2):159–66.

    Article  CAS  PubMed  Google Scholar 

  78. Tardif JC, Tanguay JF, Wright SR, Duchatelle V, Petroni T, Grégoire JC, et al. Effects of the P-selectin antagonist inclacumab on myocardial damage after percutaneous coronary intervention for non–ST-segment elevation myocardial infarction: results of the SELECT-ACS trial. J Am Coll Cardiol. 2013;61(20):2048–55.

    Article  CAS  PubMed  Google Scholar 

  79. Gullestad L, Ørn S, Dickstein K, Eek C, Edvardsen T, Aakhus S, et al. Intravenous immunoglobulin does not reduce left ventricular remodeling in patients with myocardial dysfunction during hospitalization after acute myocardial infarction. Int J Cardiol. 2013;168(1):212–8.

    Article  PubMed  Google Scholar 

  80. Squadrito F, Altavilla D, Squadrito G, Saitta A, Campo GM, Arlotta M, et al. Cyclosporin-A reduces leukocyte accumulation and protects against myocardial ischaemia reperfusion injury in rats. Eur J Pharmacol. 1999;364(2–3):159–68.

    Article  CAS  PubMed  Google Scholar 

  81. Cung TT, Morel O, Cayla G, Rioufol G, Garcia-Dorado D, Angoulvant D, et al. Cyclosporine before PCI in patients with acute myocardial infarction. N Engl J Med. 2015;373(11):1021–31.

    Article  CAS  PubMed  Google Scholar 

  82. Coll RC, Robertson AA, Chae JJ, Higgins SC, Muñoz-Planillo R, Inserra MC, et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med. 2015;21(3):248–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Stieger P, Daniel JM, Thölen C, Dutzmann J, Knöpp K, Gündüz D, et al. Targeting of extracellular RNA reduces edema formation and infarct size and improves survival after myocardial infarction in mice. J Am Heart Assoc. 2017;6(6):e004541.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ridker PM. Clinician’s guide to reducing inflammation to reduce atherothrombotic risk: JACC review topic of the week. J Am Coll Cardiol. 2018;72(25):3320–31.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the article conception. Dhruv Mahtta provided the first draft of the manuscript. Hani Jneid critically revised the work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hani Jneid.

Ethics declarations

Conflict of Interest

Guilherme Vianna Silva reports other from Medtronic and Abbott. Salim S. Virani reports grants from Department of Veterans Affairs, World Heart Federation, and Tahir and Jooma Family; Honorarium from the American College of Cardiology (Associate Editor for Innovations, acc.org); and other as a Steering Committee Member (Patient and Provider Assessment of Lipid Management (PALM) registry at Duke Clinical Research Institute [no financial remuneration]).

The other authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Management of Acute Coronary Syndromes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahtta, D., Sudhakar, D., Koneru, S. et al. Targeting Inflammation After Myocardial Infarction. Curr Cardiol Rep 22, 110 (2020). https://doi.org/10.1007/s11886-020-01358-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-020-01358-2

Keywords

Navigation