Skip to main content
Log in

Network pharmacology combined with molecular docking and dynamics to assess the synergism of esculetin and phloretin against acute kidney injury-diabetes comorbidity

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Acute kidney injury (AKI) is a global health concern with high incidence and mortality, where diabetes further worsens the condition. The available treatment options are not uniformly effective against the complex pathogenesis of AKI–diabetes comorbidity. Hence, combination therapies based on the multicomponent, multitarget approach can tackle more than one pathomechanism and can aid in AKI–diabetes comorbidity management. This study aimed to investigate the therapeutic potential of esculetin and phloretin combination against AKI–diabetes comorbidity by network pharmacology followed by validation by molecular docking and dynamics. The curative targets for diabetes, AKI, esculetin, and phloretin were obtained from DisGeNET, GeneCards, SwissTargetPrediction database. Further, the protein–protein interaction of the potential targets of esculetin and phloretin against AKI–diabetes comorbidity was investigated using the STRING database. Gene ontology and pathway enrichment analysis were performed with the help of the DAVID and KEGG databases, followed by network construction and analysis via Cytoscape. Molecular docking and dynamic simulations were performed to validate the targets of esculetin and phloretin against AKI–diabetes comorbidity. We obtained 6341 targets for AKI–diabetes comorbidity. Further, a total of 54 and 44 targets of esculetin and phloretin against AKI–diabetes comorbidity were retrieved. The top 10 targets for esculetin selected based on the degree value were AKR1B1, DAO, ESR1, PLK1, CA3, CA2, CCNE1, PRKN, HDAC2, and MAOA. Similarly, phloretin’s 10 key targets were ACHE, CDK1, MAPK14, APP, CDK5R1, CCNE1, MAOA, MAOB, HDAC6, and PRKN. These targets were enriched in 58 pathways involved in the pathophysiology of AKI–diabetes comorbidity. Further, esculetin and phloretin showed an excellent binding affinity for these critical targets. The findings of this study suggest that esculetin and phloretin combination as a multicomponent multitarget therapy has the potential to prevent AKI–diabetes comorbidity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AKI :

Acute kidney injury

ACHE :

Acetylcholinesterase

AKR1B1 :

Aldo–keto reductase family 1, member B1

APP :

Amyloid precursor protein

ARG :

Arginine

ASN :

Asparagine

ASP :

Aspartic acid

CA3 :

Carbonic anhydrase 3

CA2 :

Carbonic anhydrase 2

CCNE1 :

Cyclin E1

CDK1 :

Cyclin-dependent kinase 1

CDK5R1 :

Cyclin-dependent kinase 5 regulatory subunit 1

CYS :

Cysteine

DAO :

D-amino acid oxidase

ESR1 :

Oestrogen receptor 1

GLN :

Glutamine

GLU :

Glutamic acid

HDAC6 :

Histone deacetylase 6

HIE :

Histidine

ILE :

Isoleucine

LEU :

Leucine

LYS :

Lysine

MAOA :

Monoamine oxidase A

MAOB :

Monoamine oxidase B

MAPK14 :

Mitogen-activated protein kinase 14

PHE :

Phenylalanine

PLK1 :

Polo-like kinase 1

PRKN :

Parkin RBR E3 Ubiquitin Protein Ligase

PRO :

Proline

SER :

Serine

THR :

Threonine

TRP :

Tryptophan

TYR :

Tyrosine

References

  1. Kellum JA et al (2021) Acute kidney injury. Nat Rev Dis Primers 7(1):1–17

    Article  Google Scholar 

  2. Tai CW et al (2022) Acute kidney injury: epidemiology and course in critically ill children. J Nephrol 35(2):559–565

    Article  PubMed  Google Scholar 

  3. Lee S et al (2021) Intraoperative hyperglycemia in patients with an elevated preoperative C-reactive protein level may increase the risk of acute kidney injury after cardiac surgery. J Anesth 35(1):10–19

    Article  PubMed  Google Scholar 

  4. Gui Y et al (2023) Acute kidney injury in diabetes mellitus: epidemiology, diagnostic, and therapeutic concepts. FASEB J 37(4):e22884

    Article  CAS  PubMed  Google Scholar 

  5. Kaur A, Sharma GS, Kumbala DR (2023) Acute kidney injury in diabetic patients: a narrative review. Medicine 102(21):e33888

  6. Harding JL et al (2020) US trends in hospitalizations for dialysis-requiring acute kidney injury in people with versus without diabetes. Am J Kidney Dis 75(6):897–907

    Article  PubMed  Google Scholar 

  7. Donderski R, Bednarski R, Manitius J (2020) Controversy over renin–angiotensin–aldosterone system (RAAS) inhibitors treatment in nephrology and cardiovascular diseases. Arter Hypertens 24(2):45–55

    Article  CAS  Google Scholar 

  8. Dagar N, Kale A, Steiger S, Anders HJ, Gaikwad, AB (2022) Receptor-mediated mitophagy: an emerging therapeutic target in acute kidney injury. Mitochondrion 66:82–91

  9. Zhang R et al (2019) Network pharmacology databases for traditional Chinese medicine: review and assessment. Front Pharmacol 10:123

    Article  PubMed  PubMed Central  Google Scholar 

  10. Xin W et al (2021) TCM network pharmacology: a new trend towards combining computational, experimental and clinical approaches. Chin J Nat Med 19(1):1–11

    Google Scholar 

  11. Dagar N et al (2023) Nutraceuticals and network pharmacology approach for acute kidney injury: a review from the drug discovery aspect. Fitoterapia 168:105563

  12. Li Q et al (2021) Effect of berberine on hyperuricemia and kidney injury: a network pharmacology analysis and experimental validation in a mouse model. Drug Des Dev Ther 15:3241

    Article  Google Scholar 

  13. Oh KK, Adnan M, Cho DH (2021) Network pharmacology study on Morus alba L. leaves: pivotal functions of bioactives on RAS signaling pathway and its associated target proteins against Gout. Int J Mol Sci 22(17):9372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Memije-Lazaro IN et al (2018) Arthrospira maxima (Spirulina) and C-phycocyanin prevent the progression of chronic kidney disease and its cardiovascular complications. J Funct Foods 43:37–43

    Article  CAS  Google Scholar 

  15. Zhang H et al (2021) Mechanistic insights into the renoprotective role of curcumin in cisplatin-induced acute kidney injury: network pharmacology analysis and experimental validation. Bioengineered 12(2):11039–11054

    Article  PubMed Central  Google Scholar 

  16. Mtewa AG et al (2021) Phytopharmaceuticals: efficacy, safety, and regulation. In: Preparation of phytopharmaceuticals for the management of disorders. Elsevier, pp 25–38

  17. Chaturvedi S et al (2022) Applications of phytopharmaceuticals in targeting metabolic disorders. In: Drug delivery systems for metabolic disorders. Elsevier, pp 425–432

  18. Balaha M, Kandeel S, Kabel A (2018) Phloretin either alone or in combination with duloxetine alleviates the STZ-induced diabetic neuropathy in rats. Biomed Pharmacother 101:821–832

    Article  CAS  PubMed  Google Scholar 

  19. Ying Y et al (2018) Phloretin prevents diabetic cardiomyopathy by dissociating Keap1/Nrf2 complex and inhibiting oxidative stress. Front Endocrinol 9:774

    Article  Google Scholar 

  20. Kadakol A et al (2015) Esculetin reverses histone H2A/H2B ubiquitination, H3 dimethylation, acetylation and phosphorylation in preventing type 2 diabetic cardiomyopathy. J Funct Foods 17:127–136

    Article  CAS  Google Scholar 

  21. Kadakol A et al (2017) Esculetin ameliorates insulin resistance and type 2 diabetic nephropathy through reversal of histone H3 acetylation and H2A lysine 119 monoubiquitination. J Funct Foods 35:256–266

    Article  CAS  Google Scholar 

  22. Jung WK et al (2022) Antioxidant efficacy of esculetin against tert-butyl hydroperoxide-induced oxidative stress in HEK293 cells. Curr Issues Mol Biol 44(12):5986–5994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Güvenç M et al (2024) Protective effects of esculetin against ovary ischemia–reperfusion injury model in rats. J Biochem Mol Toxicol 38(1):e23528

    Article  PubMed  Google Scholar 

  24. Danis A et al (2023) Esculetin alleviates pentylenetetrazole-induced seizures, cognitive impairment and pro-inflammatory cytokines and suppresses penicillin-induced epileptiform activity in rats. Life Sci 313:121300

    Article  CAS  PubMed  Google Scholar 

  25. Zhou G et al (2023) Esculetin improves murine mastitis induced by Streptococcus isolated from bovine mammary glands by inhibiting NF-κB and MAPK signaling pathways. Microb Pathog 185:106393

    Article  CAS  PubMed  Google Scholar 

  26. Xia M et al (2023) The coumarin-derivative esculetin protects against lipotoxicity in primary rat hepatocytes via attenuating jnk-mediated oxidative stress and attenuates free fatty acid-induced lipid accumulation. Antioxidants 12(11):1922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shen X et al (2023) Esculetin alleviates inflammation, oxidative stress and apoptosis in intestinal ischemia/reperfusion injury via targeting SIRT3/AMPK/mTOR signaling and regulating autophagy. J Inflamm Res 16:3655–3667

  28. Li B et al (2023) Phloretin ameliorates heart function after myocardial infarction via NLRP3/Caspase-1/IL-1β signaling. Biomed Pharmacother 165:115083

    Article  CAS  PubMed  Google Scholar 

  29. Kapoor S, Padwad YS (2023) Phloretin suppresses intestinal inflammation and maintained epithelial tight junction integrity by modulating cytokines secretion in in vitro model of gut inflammation. Cell Immunol 391:104754

    Article  PubMed  Google Scholar 

  30. Li X et al (2023) Phloretin alleviates doxorubicin-induced cardiotoxicity through regulating Hif3a transcription via targeting transcription factor Fos. Phytomedicine 120:155046

    Article  CAS  PubMed  Google Scholar 

  31. Hytti M et al (2023) Phloretin inhibits glucose transport and reduces inflammation in human retinal pigment epithelial cells. Mol Cell Biochem 478(1):215–227

    Article  CAS  PubMed  Google Scholar 

  32. Shen X et al (2017) Phloretin exerts hypoglycemic effect in streptozotocin-induced diabetic rats and improves insulin resistance in vitro. Drug Des Dev Ther 11:313

    Article  CAS  Google Scholar 

  33. Shelke V, Kale A, Kulkarni YA, Gaikwad AB (2024) Phloretin: a comprehensive review of its potential against diabetes and associated complications. J Pharm Pharmacol 76(3):201–212

  34. Daina A, Michielin O, Zoete V (2019) SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res 47(W1):W357–W364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu T et al (2007) BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities. Nucleic Acids Res 35(suppl_1):D198–D201

    Article  CAS  PubMed  Google Scholar 

  36. Piñero J et al (2016) DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res gkw943

  37. Stelzer G et al (2016) The GeneCards suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinform 54(1):1–30

    Article  Google Scholar 

  38. Szklarczyk D et al (2021) The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 49(D1):D605–D612

    Article  CAS  PubMed  Google Scholar 

  39. Sherman BT et al (2022) DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res 50(W1):W216–W221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Imran M et al (2022) Molecular modeling guided drug designing for the therapeutic treatment of rheumatoid arthritis

  41. Ala C, Joshi RP, Gupta P, Ramalingam S, Sankaranarayanan M (2024) Discovery of potent DNMT1 inhibitors against sickle cell disease using structural-based virtual screening, MM-GBSA and molecular dynamics simulation-based approaches. J Biomol Struct Dyn 42(1):261–273

  42. Kikiowo B, Ahmad I, Alade AA, Ijatuyi T, Iwaloye O, Patel HM (2023) Molecular dynamics simulation and pharmacokinetics studies of ombuin and quercetin against human pancreatic α-amylase. J Biomol Struct Dyn 41(20):10388–10395

  43. Dagar N et al (2022) Receptor-mediated mitophagy: an emerging therapeutic target in acute kidney injury. Mitochondrion 66:82–91

    Article  CAS  PubMed  Google Scholar 

  44. Shelke V et al (2022) Epigenetic regulation of Toll-like receptors 2 and 4 in kidney disease. J Mol Med 100(7):1017–1026

    Article  CAS  PubMed  Google Scholar 

  45. Shelke V et al (2023) Toll-like receptors 2 and 4 stress signaling and sodium-glucose cotransporter-2 in kidney disease. Mol Cell Biochem 478(9):1987–1998

    Article  CAS  PubMed  Google Scholar 

  46. Wen L et al (2023) Tubular aryl hydratocarbon receptor upregulates EZH2 to promote cellular senescence in cisplatin-induced acute kidney injury. Cell Death Dis 14(1):18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li J et al (2023) Nephroprotective mechanisms of Rhizoma Chuanxiong and Radix et Rhizoma Rhei against acute renal injury and renal fibrosis based on network pharmacology and experimental validation. Front Pharmacol 14:1154743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Salama AA, Elgohary R, Fahmy MI (2023) Protocatechuic acid ameliorates lipopolysaccharide‐induced kidney damage in mice via downregulation of TLR‐4‐mediated IKBKB/NF‐κB and MAPK/Erk signaling pathways. J Appl Toxicol 43(8): 1119–1129

  49. González-Soria I et al (2023) SerpinA3K deficiency reduces oxidative stress in acute kidney injury. Int J Mol Sci 24(9):7815

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cao Z et al (2023) Simultaneous blockade of VEGF-B and IL-17A ameliorated diabetic kidney disease by reducing ectopic lipid deposition and alleviating inflammation response. Cell Death Discovery 9(1):8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu C, Wang Q, Niu L (2023) Sufentanil inhibits Pin1 to attenuate renal tubular epithelial cell ischemia–reperfusion injury by activating the PI3K/AKT/FOXO1 pathway. Int Urol Nephrol 55(8):1903–1916

  52. Zuo Z, Li Q, Zhou S, Yu R, Wu C, Chen J, Wang W (2023) Berberine ameliorates contrast‐induced acute kidney injury by regulating HDAC4‐FoxO3a axis‐induced autophagy: in vivo and in vitro. Phytother Res 18:7745–7758

  53. Dare A, Channa ML, Nadar A (2021) L-ergothioneine and its combination with metformin attenuates renal dysfunction in type-2 diabetic rat model by activating Nrf2 antioxidant pathway. Biomed Pharmacother 141:111921

    Article  CAS  PubMed  Google Scholar 

  54. Shelke V et al (2023) Concomitant inhibition of TLR-4 and SGLT2 by phloretin and empagliflozin prevents diabetes-associated ischemic acute kidney injury. Food Funct 14(11):5391–5403

    Article  CAS  PubMed  Google Scholar 

  55. Wang Y et al (2021) Quercetin alleviates acute kidney injury by inhibiting ferroptosis. J Adv Res 28:231–243

    Article  CAS  PubMed  Google Scholar 

  56. Liu Z, Guan C, Li C, Zhang N, Yang C, Xu L, Xu Y (2022) Tilianin reduces apoptosis via the ERK/EGR1/BCL2L1 pathway in ischemia/reperfusion-Induced acute kidney injury mice. Front Pharmacol 13:862584

  57. Pandey A et al (2017) Esculetin ameliorates hepatic fibrosis in high fat diet induced non-alcoholic fatty liver disease by regulation of FoxO1 mediated pathway. Pharmacol Rep 69(4):666–672

    Article  CAS  PubMed  Google Scholar 

  58. Liu J, Sun M, Xia Y, Cui X, Jiang J (2022) Phloretin ameliorates diabetic nephropathy by inhibiting nephrin and podocin reduction through a non-hypoglycemic effect. Food Funct 13(12):6613–6622

  59. Luo T-T et al (2020) Network pharmacology in research of Chinese medicine formula: methodology, application and prospective. Chin J Integr Med 26(1):72–80

    Article  CAS  PubMed  Google Scholar 

  60. Lee S-K, Boron WF, Occhipinti R (2023) Potential novel role of membrane-associated carbonic anhydrases in the kidney. Int J Mol Sci 24(4):4251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Er A (2023) Various carbonic anhydrases in physiopathological events, carbonic anhydrase inhibitors, and hybrid compounds. Lett Drug Des Discovery 20(10):1427–1436

    Article  CAS  Google Scholar 

  62. Liu L et al (2019) p53 upregulated by HIF-1 α promotes hypoxia-induced G2/M arrest and renal fibrosis in vitro and in vivo. J Mol Cell Biol 11(5):371–382

    Article  CAS  PubMed  Google Scholar 

  63. Wu T-T et al (2020) AKR1B1-induced epithelial–mesenchymal transition mediated by RAGE-oxidative stress in diabetic cataract lens. Antioxidants 9(4):273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li L et al (2024) Proteomics-based screening of AKR1B1 as a therapeutic target and validation study for sepsis-associated acute kidney injury. PeerJ 12:e16709

    Article  PubMed  PubMed Central  Google Scholar 

  65. Zhang H et al (2012) Study on the decrease of renal D-amino acid oxidase activity in the rat after renal ischemia by chiral ligand exchange capillary electrophoresis. Amino Acids 42:337–345

    Article  CAS  PubMed  Google Scholar 

  66. Ma H-Y, Chen S, Du Y (2021) Estrogen and estrogen receptors in kidney diseases. Ren Fail 43(1):619–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kim D-E et al (2023) Plk2-mediated phosphorylation and translocalization of Nrf2 activates anti-inflammation through p53/Plk2/p21cip1 signaling in acute kidney injury. Cell Biol Toxicol 39(4):1509–1529

    Article  CAS  PubMed  Google Scholar 

  68. Du Y et al (2023) Plk1 promotes renal tubulointerstitial fibrosis by targeting autophagy/lysosome axis. Cell Death Dis 14(8):571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhao F, Zhu J, Zhang M, Luo Y, Li Y, Shi L, Wu X (2023) OGG1 aggravates renal ischemia–reperfusion injury by repressing PINK1‐mediated mitophagy. Cell Prolif 56(8):e13418

  70. Shi L et al (2022) HDAC6 inhibition alleviates ischemia-and cisplatin-induced acute kidney injury by promoting autophagy. Cells 11(24):3951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Meakin PJ et al (2020) Elevated circulating amyloid concentrations in obesity and diabetes promote vascular dysfunction. J Clin Investig 130(8):4104–4117

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Tanaka R et al (2017) Sex differences in ischaemia/reperfusion-induced acute kidney injury depends on the degradation of noradrenaline by monoamine oxidase. Clin Exp Pharmacol Physiol 44(3):371–377

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

ABG sincerely acknowledges the financial support provided by the Birla Institute of Technology and Science, Pilani, Pilani Campus, for carrying out this work.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

N.D. was involved in conceptualization, writing—original draft preparation, methodology, investigation, data analysis. H.R.J. helped in writing—review & editing of the manuscript. A.B.G. conceptualised and designed the experiments, writing—review & editing of the manuscript, supervision. All authors have approved the final manuscript draft for publication.

Corresponding author

Correspondence to Anil Bhanudas Gaikwad.

Ethics declarations

Conflict of interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 950 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dagar, N., Jadhav, H.R. & Gaikwad, A.B. Network pharmacology combined with molecular docking and dynamics to assess the synergism of esculetin and phloretin against acute kidney injury-diabetes comorbidity. Mol Divers (2024). https://doi.org/10.1007/s11030-024-10829-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-024-10829-5

Keywords

Navigation