Skip to main content
Log in

Shexiang Tongxin Dropping Pill Allieviates Heart Failure via Extracellula Matrix-Receptor Interaction Pathways Based on RNA-Seq Transcriptomics and Experimental Studies

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To investigate the protective mechanisms of Chinese medicine Shexiang Tongxin Dropping Pills (STDP) on heart failure (HF).

Methods

Isoproterenol (ISO)-induced HF rat model and angiotensin II (Ang II)-induced neonatal rat cardiac fibroblast (CFs) model were used in the present study. HF rats were treated with and without STDP (3 g/kg). RNA-seq was performed to identify differentially expressed genes (DEGs). Cardiac function was evaluated by echocardiography. Hematoxylin and eosin and Masson’s stainings were taken to assess cardiac fibrosis. The levels of collagen I (Col I) and collagen III (Col III) were detected by immunohistochemical staining. CCK8 kit and transwell assay were implemented to test the CFs’ proliferative and migratory activity, respectively. The protein expressions of α-smooth muscle actin (α-SMA), matrix metalloproteinase-2 (MMP-2), MMP-9, Col I, and Col III were detected by Western blotting.

Results

The results of RNA-seq analysis showed that STDP exerted its pharmacological effects on HF via multiple signaling pathways, such as the extracellular matrix (ECM)-receptor interaction, cell cycle, and B cell receptor interaction. Results from in vivo experiments demonstrated that STDP treatment reversed declines in cardiac function, inhibiting myocardial fibrosis, and reversing increases in Col I and Col III expression levels in the hearts of HF rats. Moreover, STDP (6, 9 mg/mL) inhibited the proliferation and migration of CFs exposed to Ang II in vitro (P<0.05). The activation of collagen synthesis and myofibroblast generation were markedly suppressed by STDP, also the synthesis of MMP-2 and MMP-9, as well as ECM components Col I, Col III, and α-SMA were decreased in Ang II-induced neonatal rats’ CFs.

Conclusions

STDP had anti-fibrotic effects in HF, which might be caused by the modulation of ECM-receptor interaction pathways. Through the management of cardiac fibrosis, STDP may be a compelling candidate for improving prognosis of HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adamo L, Rocha-Resende C, Prabhu SD, Mann DL. Reappraising the role of inflammation in heart failure. Nat Rev Cardiol 2020;17:269–285.

    Article  PubMed  Google Scholar 

  2. Bacmeister L, Schwarzl M, Warnke S, Stoffers B, Blankenberg S, Westermann D, et al. Inflammation and fibrosis in murine models of heart failure. Basic Res Cardiol 2019;114:19.

    Article  PubMed  Google Scholar 

  3. Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, et al. Heart disease and stroke statistics-2021 update:A report from the American Heart Association. Circulation 2021;143:e254–e743.

    Article  PubMed  Google Scholar 

  4. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics—2020 update: a report from the American Heart Association. Circulation 2020;141:e139–e596.

    Article  PubMed  Google Scholar 

  5. Jia Q, Wang L, Zhang X, Ding Y, Li H, Yang Y, et al. Prevention and treatment of chronic heart failure through traditional Chinese medicine: role of the gut microbiota. Pharmacol Res 2020;151:104552.

    Article  CAS  PubMed  Google Scholar 

  6. Liu H, Chen X, Zhao X, Zhao B, Qian K, Shi Y, et al. Screening and identification of cardioprotective compounds from Wenxin Keli by activity index approach and in vivo Zebrafish model. Front Pharmacol 2018;9:1288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen DX, Lin S, Xu W, Huang MQ, Chu JF, Xiao F, et al. Qualitative and quantitative analysis of the major constituents in Shexiang Tongxin Dropping Pill by HPLC-Q-TOF-MS/MS and UPLC-QqQ-MS/MS. Molecules 2015;20:18597–18619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lu YL, Chu XP, Zhang JF, Zhao YB, Jin CY, Zhu JH, et al. Effect of Shexiang Tongxin Dropping Pill on stable coronary artery disease patients with normal fractional flow reserve and coronary microvascular disease. Medicine 2020;99:e22126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ding Y, Zhu HY, Zhang LZ, Gao BB, Zhou L, Jin Y, Huang JY. Shexiang Tongxin Dropping Pill reduces coronary microembolization in rats via regulation of mitochondrial permeability transition pore opening and Akt-Gsk3β phosphorylation. Chin J Integr Med 2021;27:527–523.

    Article  CAS  PubMed  Google Scholar 

  10. Xiong MQ, Jia CL, Cui JG, Wang PW, Du XY, Yang QB, et al. Shexiang Tongxin Dropping Pill attenuates atherosclerotic lesions in ApoE deficient mouse model. J Ethnopharmacol 2015;159:84–92.

    Article  PubMed  Google Scholar 

  11. Qi JY, Pan WJ, Tan YF, Luo JR, Fan DC, Yu J, et al. Shexiang Tongxin Dropping Pill protects against isoproterenol induced myocardial ischemia in vivo and in vitro. Oncotarget 2017;8:108958–108969.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lin S, Chu JF, Zhang L, Chen DX, Xiao F, Chen HW, et al. Protective effects of Shexiang Tongxin Dropping Pill on pituitrin induced acute myocardial ischemia in rats. Mol Med Rep 2017;16:3125–3132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang SH, Chu L, Xu Z, Zhou HL, Chen JF, Ning HF. Effect of Shexiang Tongxin Dropping Pills on the immediate blood flow of patients with coronary slow flow. Chin J Integr Med 2019;25:360–365.

    Article  CAS  PubMed  Google Scholar 

  14. Ni Y, Deng J, Liu X, Li Q, Zhang J. Echinacoside reverses myocardial remodeling and improves heart function via regulating SIRT1/FOXO3a/MnSOD axis in HF rats induced by isoproterenol. J Cell Mol Med 2021;25:203–216.

    Article  CAS  PubMed  Google Scholar 

  15. Lin S, Lin JM, Zhang L, Chen DX, Xiao F, Chen HW, et al. Shexiang Tongxin Dropping Pill protects against Na2S2O4-Induced hypoxia-reoxygenation injury in H9c2 cells. Chin J Integr Med 2019;25:439–445.

    Article  PubMed  Google Scholar 

  16. Metra M, Teerlink JR. Heart failure. Lancet 2017;390:1981–1995.

    Article  PubMed  Google Scholar 

  17. Tsutsui H, Isobe M, Ito H, Ito H, Okumura K, Ono M, et al. JCS 2017/JHFS 2017 guideline on diagnosis and treatment of acute and chronic heart failure: digest version. Circ J 2019;83:2084–2184.

    Article  PubMed  Google Scholar 

  18. Hao P, Jiang F, Cheng J, Ma L, Zhang Y, Zhao Y. Traditional Chinese medicine for cardiovascular disease: evidence and potential mechanisms. J Am Coll Cardiol 2017;69:2952–2966.

    Article  PubMed  Google Scholar 

  19. Hua XP, Zhan Y, Li ZX, Wu RX. Effect of Shexiang Tongxin Dropping Pill on cardiac function in patients with chronic heart failure. Chin J Integr Med Cardio/Cerebrovasc Dis (Chin) 2011;9:143–145.

    Google Scholar 

  20. Xia HJ. Clinical study on Shexiang Tongxin Dropping Pills combined with routine Western medicine for stable angina pectoris of coronary heart disease. New Chin Med (Chin) 2022;54(8):64–67.

    CAS  Google Scholar 

  21. Pan J, Zhou JM, Wang XM, Zuo KN, Wang ZH, Lu SQ, et al. Meta-analysis of efficacy and safety of Shexiang Tongxin Dripping Pills combined with conventional therapy of coronary heart disease. China J Chin Mater Med (Chin) 2021;46:2325–2336.

    Google Scholar 

  22. Chen DX, Lin S, Xu W, Huang MQ, Chu JF, Xiao F, et al. Qualitative and quantitative analysis of the major constituents in Shexiang Tongxin Dropping Pill by HPLCQ-TOF-MS/MS and UPLC-QqQ-MS/MS. Molecules 2015;20:18597–18619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Han XD, Zhou ZW, Yang W, Ye HC, Xu YZ, Huang YF, et al. A computational and functional study elicits the ameliorating effect of the Chinese herbal formula Huo Luo Xiao Ling Dan on experimental ischemia-induced myocardial injury in rats via inhibition of apoptosis. Drug Des Devel Ther 2015;9:1063–1102.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu HY, Tang Y, Gao LY, Sun WX, Hua Y, Yang SB, et al. The synergetic effect of edaravone and borneol in the rat model of ischemic stroke. Eur J Pharmacol 2014;740:522–531.

    Article  CAS  PubMed  Google Scholar 

  25. Wang JJ, Rau C, Avetisyan R, Ren SX, Romay CM, Stolin G, et al. Genetic dissection of cardiac remodeling in an isoproterenol-induced heart failure mouse model. PLoS Genet 2016;12:e1006038.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nim HT, Furtado MB, Costa MW, Kitano H, Rosenthal NA, Boyd SE. CARFMAP: a curated pathway map of cardiac fibroblasts. PLoS ONE 2015;10:e0143274.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sui XZ, Wei HC, Wang DC. Novel mechanism of cardiac protection by valsartan: synergetic roles of TGF-β1 and HIF-1α in Ang II-mediated fibrosis after myocardial infarction. J Cell Mol Med 2015;19:1773–1782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fan D, Takawale A, Le J. Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. Fibrogenesis Tissue Repair 2012;3:15.

    Article  Google Scholar 

  29. Zamilpa R, Lindsey ML. Extracellular matrix turnover and signaling during cardiac remodeling following MI: causes and consequences. J Mol Cell Cardiol 2010;48:558–563.

    Article  CAS  PubMed  Google Scholar 

  30. Nguyen Dinh Cat A, Montezano AC, Burger D, Touyz RM. Angiotensin II, NADPH oxidase, and redox signaling in the vasculature. Antioxidants Redox Signal 2013;19:1110–1120.

    Article  CAS  Google Scholar 

  31. Montezano AC, Nguyen DC, Rios FJ. Angiotensin II and vascular injury. Curr Hypertens Rep 2014;16:431.

    Article  PubMed  Google Scholar 

  32. Fu B, Su Y, Ma X, Mu CY, Yu FS. Scoparone attenuates angiotensin II-induced extracellular matrix remodeling in cardiac fibroblasts. J Pharmacol Sci 2018;137:110–115.

    Article  CAS  PubMed  Google Scholar 

  33. Kong P, Christia P, Frangogiannis NG. The pathogenesis of cardiac fibrosis. Cell Mol Life Sci 2014;71:549–574.

    Article  CAS  PubMed  Google Scholar 

  34. Mayer F, Falk M, Huhn R, Behmenburg F, Ritz-Timme S. Matrixmetalloproteinases and tissue inhibitors of metalloproteinases: immunhistochemical markers in the diagnosis of lethal myocardial infarctions? Forensic Sci Int 2018;288:181–188.

    Article  CAS  PubMed  Google Scholar 

  35. Bobinska K, Szemraj J, Galecki P, Talarowska M. The role of MMP genes in recurrent depressive disorders and cognitive functions. Acta Neuropsychiatr 2016;28:221–231.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-zhou Zhang.

Additional information

Supported by Foundation of Guangdong Province of Traditional Chinese Medicine (No. 20201142) and Medical Scientific Research Foundation of Guangdong Province (No. A2020323)

Conflict of Interest

The authors declare that they have no conflicts of interest.

Author Contributions

Zhang MZ conceived and designed the experiments, Tan YF and Fu YH performed the experiments, Tan YF analyzed the data, Fu YH contributed reagents/materials/analysis tools. Zhang MZ and Tan YF wrote the manuscript. All authors read and approved the final version of the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Yf., Fu, Yh. & Zhang, Mz. Shexiang Tongxin Dropping Pill Allieviates Heart Failure via Extracellula Matrix-Receptor Interaction Pathways Based on RNA-Seq Transcriptomics and Experimental Studies. Chin. J. Integr. Med. 29, 600–607 (2023). https://doi.org/10.1007/s11655-023-3633-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-023-3633-0

Keywords

Navigation