Skip to main content
Log in

Petrogenetic characterization of the host rocks of the Sanaga iron ore prospect, southern Cameroon

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

The Sanaga iron ore prospect is a recent discovery in the Nyong Series with a resource estimated at 82.9 Mt at 32.1% Fe and whose origin remains debatable. The mineralization occurs as NE-SW oriented discontinuous lenticular bodies of magnetite-bearing pyroxene-gneisses (MPG) hosted by ortho-derived gneisses. Rare amphibolites are observed. The MPG mineral assemblage consists of quartz-magnetite-orthopyroxene-garnet-tremolite/actinolite exhibiting a granoblastic texture, which is characteristic of granulite facies metamorphism. The granodioritic gneisses show compositional features of the tonalite-trondhjemite-granodiorite association. Their trace and REE element geochemistry indicate their protolith melt resulted from the partial melting of a subducted oceanic slab, with interaction with the overlying mantle wedge during ascent. The amphibolites show enrichment in LILE with negative Ta–Nb and Zr–Hf indicating arc-related magmas generated by partial melting of a sub-continental lithospheric mantle source with metasomatism by subduction-related fluids. The MPG exhibits oxidation-exsolution features characterized by ilmenite lamellae, with hematite fracture-filling in magnetite, and lacks features characteristic of typical BIF such as LREE depletion relative to HREE, positive Eu, La, and Y anomalies. Based on the results of this study, we interpret the Sanaga MPG as a possible skarn-type mineralization formed by the metamorphism/metasomatism of a possible BIF protolith. The results of this study compare with similar magnetite-rich mineralization in the São Francisco craton in northeastern Brazil and enhance the correlation of pre-drift reconstructions of the São Francisco–Congo Cratons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abou’ou Ango T, Njom B, Ekoa BAZ, Onana JB, Bafon, TG, Olinga JB, Mvondo OJ (2021) Correlations between morphoneotectonic parameters and Precambrian tectonic structures in the Nyong Group greenstone belts: Example of the Kopongo area (NW of the Congo Craton, Southwestern Cameroon). J African Earth Sci 182:104272. https://doi.org/10.1016/j.jafrearsci.2021.104272

    Article  Google Scholar 

  • Abdel-Rahman AFM (2000) Petrogenesis of a rare Ediacaran tonalite–trondhjemite–granodiorite suite, Egypt, and implications for Neoproterozoic Gondwana assembly. Geol Mag. https://doi.org/10.1017/S0016756820000795

    Article  Google Scholar 

  • Aidoo F, Nude PM, Sun F-Y, Li Z-X, Liang T, Zhang S-B (2020) Paleoproterozoic transitional TTG-like metagranites from the Dahomeyide Belt, Ghana: constraints on the evolution of the Birimian-Eburnean Orogeny. Precambrian Res. https://doi.org/10.1016/j.precamres.2020.106024

    Article  Google Scholar 

  • Alibo DS, Nozaki Y (1999) Rare earth elements in seawater: particle association, shale-normalization, and Ce oxidation. Geochim Cosmochim Acta 63:363–372

    Article  Google Scholar 

  • Andonaegui P, Castiñeiras P, González Cuadra P, Arenas R, Sánchez Martínez S, Abati J, Díaz García F, Martínez Catalán JR (2012) The Corredoiras orthogneiss (NW Iberian Massif): geochemistry and geochronology of the Paleozoic magmatic suite developed in a peri-Gondwanan arc. Lithos 128–131:84–99

    Article  Google Scholar 

  • Barker F, Arth JG (1976) Generation of trondhjemitic–tonalitic liquids and Archaean bimodal trondhjemite–basalt suites. Geol 4:596–600. https://doi.org/10.1130/0091-7613-(1976)4%3c596:GOTLAA%3e2.0.CO;2

    Article  Google Scholar 

  • Bau M, Dulski P (1996) Distribution of yttrium and rare-earth elements in the Penge and Kuruman Iron Formation, Transvaal Supergroup, South Africa. Precambrian Res 79:37–55

    Article  Google Scholar 

  • Bicalho V, Dorneles Remus MV, Rizzardo R, Dani N (2019) Geochemistry, metamorphic evolution, and tectonic significance of metabasites from Caçapava do Sul, southern Brazil. Braz J Geol. https://doi.org/10.1590/2317-4889201920180039

    Article  Google Scholar 

  • Bolhar R, Kamber BS, Moorbath S, Fedo CM, Whitehouse MJ (2004) Characterization of Early Archean chemical sediments by trace element signatures. Earth Planet Sci Lett 222(1):43–60. https://doi.org/10.1016/j.epsl.2004.02.016

    Article  Google Scholar 

  • Bonda BMM, Etame J, Kouske AP, Bayiga EC, Ngon GFN, Mbaï SJ, Gérard M (2017) Edea North Area, Nyong Complex, Southern Cameroon: implication for origin and enrichment process. Int J Geosci 8:659–677

    Article  Google Scholar 

  • Bouyo Houketchang M, Penaye J, Mouri H, Toteu SF (2019) Eclogite facies metabasites from the Paleoproterozoic Nyong Group, SW Cameroon: mineralogical evidence and implications for a high-pressure metamorphism related to a subduction zone at the NW margin of the Archean Congo craton. J African Earth Sci 149:215–234. https://doi.org/10.1016/j.jafrearsci.2018.08.010

    Article  Google Scholar 

  • Brown GC, Thorpe RS, Webb PC (1984) The geochemical characteristics in contrasting arcs and comments on magma sources. J Geol Soc Lond 141:413–426

    Article  Google Scholar 

  • Buddington AF, Lindsley DH (1964) Iron-titanium oxide minerals and synthetic equivalents. J Petrol 5:310–357

    Article  Google Scholar 

  • Cen Y, Peng S, Kusky TM, Jiang X, Wang L (2012) Granulite facies metamorphic age and tectonic implications of BIFs from the Kongling Group in the Northern Huangling Anticline. J Earth Sci 23(5):648–658. https://doi.org/10.1007/s12583-012-0286-x

    Article  Google Scholar 

  • Childress TM, Simon AC, Reich M, Barra F, Arce M, Lundstrom CC, Bindeman IN (2020) Formation of the Mantoverde iron oxide-copper-gold (IOCG) deposit, Chile: insights from Fe and O stable isotopes and comparisons with iron oxide-apatite (IOA) deposits. Miner Depos 55:1489–1504. https://doi.org/10.1007/s00126-019-00936-x

    Article  Google Scholar 

  • Chombong NN, Suh CE (2013) 2883 ma commencement of BIF deposition at the northern edge of Congo craton, southern Cameroon: new zircon SHRIMP data constraint from metavolcanics. Episodes 36:47–57

    Article  Google Scholar 

  • Chombong NN, Suh CE, Lehmann B, Vishiti A, Ilouga DC, Shemang EM, Tantoh BS, Kedia AC (2017) Host rock geochemistry, texture and chemical composition of magnetite in iron ore in the Neoarchaean Nyong unit in southern Cameroon. Appl Earth Sci. https://doi.org/10.1080/03717453.2017.1345507

    Article  Google Scholar 

  • Clout JMF, Simonson BM (2005) Precambrian iron formations and iron formation-hosted iron ore deposits. Econ Geol, 100th anniversary vol, 643–679. https://doi.org/10.5382/AV100.20

  • Condie KC (2005) TTGs and adakites: are they both slab melts? Lithos 80:33–44

    Article  Google Scholar 

  • Cox KG, Bell JD, Pankhurst RJ (1979) The Interpretation of Igneous Rocks. George, Allen and Unwin, London

  • Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted. Nature 367:662–665

    Article  Google Scholar 

  • de Moraes JD, Cordeiro P, Abrahão Filho E, Oliveira JR, da Silva R, Filho CV (2020) Metamorphic disturbances of magnetite chemistry and the Sm-Nd isotopic system of reworked Archean iron formations from NE Brazil. Geosci Front. https://doi.org/10.1016/j.gsf.2020.11.018

    Article  Google Scholar 

  • Djoukouo Soh AP, Ganno S, Zhang L, Soh Tamehe L, Wang C, Peng Z, Tong X, Nzenti JP (2021) Origin, tectonic environment and age of the Bibole banded iron formations, northwestern Congo Craton, Cameroon: geochemical and geochronological constraints. Geol Mag. https://doi.org/10.1017/S0016756821000765

    Article  Google Scholar 

  • Dong R, Wang H, Li W, Yan Q-H, Zhang X (2020) The geology, magnetite geochemistry, and oxygen isotopic composition of the Akesayi skarn iron deposit, Western Kunlun Orogenic Belt, Xinjiang, Northwest China: Implications for Ore Genesis. Ore Geol Rev. https://doi.org/10.1016/j.oregeorev.2020.103854

    Article  Google Scholar 

  • Duuring P, Hagemann S (2013) Genesis of superimposed hypogene and supergene iron ore bodies in BIF at the Madoonga deposit, Yilgarn Craton, Western Australia. Miner Depos 48:371–395

    Article  Google Scholar 

  • Ebah Abeng AS, Ndjigui P-D, Beyanu AA, Tessontsap T, Bilong P (2012) Geochemistry of pyroxenites, amphibolites and their weathered products in the Nyong unit, SW Cameroon (NW border of Congo Craton): Implications for Au-PGE exploration. J Geochem Explor 114:1–19

    Article  Google Scholar 

  • El Habaak GH (2004) Pan-African skarn deposits related to banded iron formation, Desert, Egypt. J African Earth Sci 38:199–221

    Article  Google Scholar 

  • Feybesse JL, Johan V, Triboulet C, Guerrot C, Mayaga-Mikolo F, BouchotEko N’dong J V (1998) The West Central African belt: a model of 2.5–2.0 Ga accretion and two-phase orogenic evolution. Precambrian Res 87:161–216

    Article  Google Scholar 

  • Foley S, Tiepolo M, Vannucci R (2002) Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature 417:837–840

    Article  Google Scholar 

  • Fowler MB, Henney PJ, Darbyshire DPF, Greenwood PB (2001) Petrogenesis of high Ba–Sr granites: the Rogart pluton, Sutherland. J Geol Soc Lond 158:521–534

    Article  Google Scholar 

  • Fuanya C, Bolarinwa AT, Kankeu B, Fouateu Yongue R, Tangko ET, Yetedje Nkepguep F (2019) Geochemical characteristics and petrogenesis of basic rocks in the Ako’ozam–Njabilobe area, Southwestern Cameroon: implications for Au genesis. SN Appl Sci 1:904. https://doi.org/10.1007/s42452-019-0959-5

    Article  Google Scholar 

  • Ganbat A, Tsujimori T, Boniface N, Pastor-Galán D, Aoki S, Aoki S (2021) Crustal evolution of the Paleoproterozoic Ubendian Belt (SW Tanzania) western margin: A Central African Shield amalgamation tale. Gondwana Res 91:286–306

    Article  Google Scholar 

  • Ganno S, Njiosseu Tanko EL, Kouankap Nono GD, Djoukouo Soh A, Moudioh C, Ngnotué T, Nzenti JP (2017) A mixed seawater and hydrothermal origin of superior-type banded iron formation (BIF)-hosted Kouambo iron deposit, Palaeoproterozoic Nyong series, Southwestern Cameroon: constraints from petrography and geochemistry. Ore Geol Rev 80:860–875

    Article  Google Scholar 

  • Gatsé Ebotehouna C, Xie Y, Adomako-Ansah K, Gourcerol B, Yunwei QuY (2021) Depositional environment and genesis of the Nabeba Banded Iron Formation (BIF) in the Ivindo Basement Complex, Republic of the Congo: perspective from whole-rock and magnetite geochemistry. Minerals 11:579. https://doi.org/10.3390/min11060579

    Article  Google Scholar 

  • Gorton MP, Schandl ES (2000) From continents to islands arcs: a geochemical index of tectonic setting for arc-related and within-plate felsic to intermediate volcanic rocks. Canad Mineral 38:1065–1073

    Article  Google Scholar 

  • Gutzmer J, Beukes NJ (2009) Iron and manganese ore deposits: mineralogy, geochemistry and economic geology. In: Geol, vol 4. Eolss Publishers Co. Ltd/UNESCO, Oxford, pp 43–69. https://www.eolss.net/Sample-Chapters/C01/E6-15-06-03.pdf

  • Hagemann SG, Angerer T, Duuring P, Rosière CA, Figueiredo e Silva RC, Lobato L, Hensler AS, Walde DHG (2016) BIF-hosted iron mineral system: a review. Ore Geol Rev 76:317–359. https://doi.org/10.1016/j.oregeorev.2015.11.004

    Article  Google Scholar 

  • Hagner AF, Collins LG (1967) Magnetite ore formed during regional metamorphism, Ausable Magnetite District New York. Econ Geol 62:1034–1071

    Article  Google Scholar 

  • Hastie A, Kerr A, McDonald I, Mitchell S, Pearce J, Millar I, Barfod D, Mark D (2010) Geochronology, geochemistry and petrogenesis of rhyodacite lavas in eastern Jamaica: a new adakite subgroup analogous to early Archaean continental crust? Chem Geol 276:344–359

    Article  Google Scholar 

  • Hawkins T, Smith MP, Herrington RJ, Maslennikov V, Boyce AJ, Jeffries T (2016) The geology and genesis of the iron skarns of the Turgai belt, northwestern Kazakhstan. Ore Geol Rev. https://doi.org/10.1016/j.oregeorev.2015.10.016

    Article  Google Scholar 

  • Hergt JM, Peate DW, Hawkesworth CJ (1991) The petrogenesis of Mesozoic Gondwana low-Ti flood basalts. Earth Planet Sci Lett 105:134–148

    Article  Google Scholar 

  • Hine R, Williams IS, Chappell BW (1978) Contrasts between I- and S-type granitoids of the Kosciusko batholith. J Geol Soc Aust 25(3):219–234

    Article  Google Scholar 

  • Ilouga DCI, Ndong Bidzang F, Ziem A, Bidias LA, Olinga JB, Tata E, Minyem D (2017) Geochemical characterization of a stratigraphic log bearing iron ore in the sanaga prospect, upper Nyong Unit of Ntem Complex, Cameroon. J Geosci Geomat 5(5):218–228. https://doi.org/10.12691/JGG-5-5-1

    Article  Google Scholar 

  • James HL (1954) Sedimentary facies of iron-formations. Econ Geol 49:235–293. https://doi.org/10.2113/gsecongeo.49.3.235

    Article  Google Scholar 

  • Jahn BM, Liu DY, Wan YS, Song B, Wu JS (2008) Archean crustal evolution of the Jiaodong Peninsula, China, as revealed by zircon SHRIMP geochronology, elemental and Nd-isotope geochemistry. Am J Sci 308:232–269

    Article  Google Scholar 

  • Kalczynski MJ, Gates AE (2014) Hydrothermal alteration, mass transfer and magnetite mineralization in dextral shear zones, western Hudson Highlands, New York, United States. Ore Geol Rev 61:226–247. https://doi.org/10.1016/j.oregeorev.2014.02.007

    Article  Google Scholar 

  • Kelemen PB, Hangh JK, Greene AR (2003) One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. Treatise Geochem 3:593–659. https://doi.org/10.1016/B0-08-043751-6/03035-8

    Article  Google Scholar 

  • Klein C (2005) Some Precambrian banded iron-formations (BIFs) from around the world: their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin. Am Miner 90:1473–1499

    Article  Google Scholar 

  • Knipping JL, Bilenker L, Simon AC, Reich M, Barra F, Deditius A, Wälle M, Heinrich CA, Holtz F, Munizaga R (2015) Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes. Geochim Cosmochim Acta 171:15–38

    Article  Google Scholar 

  • Kondja SR, Ndong Ondo SM, Minko AE, Mikolo FM (2017) The Bélinga Iron Ore Deposit (~2.8 Ga), NE-Gabon: reactualization and new interpretations on crests. Eur Sci J 13:1857–7881. https://doi.org/10.19044/esj.2017.v13n24p307

    Article  Google Scholar 

  • Konhauser KO, Planavsky NJ, Hardisty DS, Robbins LJ, Warchola TJ, Haugaard R, Lalonde SV, Partin CA, Oonk PBH, Tsikos H, Lyons TW, Bekker A, Johnson CM (2017) Iron formations: a global record of Neoarchaean to Palaeoproterozoic environmental history. Earth Sci Rev 172:140–177. https://doi.org/10.1016/j.earscirev.2017.06.012

    Article  Google Scholar 

  • Kwamou Wanang MM, Kouankap NGD, Nkouathio DG, Ayonta KP (2021) Petrogenesis and U-Pb zircon dating of amphibolite in the Mewengo iron deposit, Nyong series, Cameroon: fingerprints of iron depositional geotectonic setting. Arab J Geosci 14:872. https://doi.org/10.1007/s12517-021-07235-8

    Article  Google Scholar 

  • La Flèche MR, Camire G, Jenner GA (1998) Geochemistry of post-Acadian, Carboniferous continental intraplate basalts from the Maritimes Basin, Magdalen Islands, Québec, Canada. Chem Geol 148:115–136

    Article  Google Scholar 

  • Lan CY, Long XP, Zhao TP, Zhai MG (2019) In-site mineral geochemistry and whole-rock Fe isotopes of the quartz magnetite-pyroxene rocks in the Wuyang area, North China Craton: constraints on the genesis of the pyroxene-rich BIF. Precambrian Res 333:105445. https://doi.org/10.1016/j.precamres2019.105445

    Article  Google Scholar 

  • Lane K, Jagodzinski EA, Dutch R, Reid AJ, Hand M (2015) Age constraints on the timing of iron ore mineralisation in the southeastern Gawler Craton. Austral J Earth Sci: Int Geosci J Geol Soc Aust 62(1):55–75. https://doi.org/10.1080/08120099.2015.993160

    Article  Google Scholar 

  • Lerouge C, Cocherie A, Toteu SF, Penaye J, Milési JP, Tchameni R, Nsifa EN, Fanning CM, Deloule E (2006) Shrimp U-Pb zircon age evidence for Paleoproterozoic sedimentation and 2.05 Ga syntectonic plutonism in the Nyong Group, South-Western Cameroon: consequences for the Eburnean-Transamazonian belt of NE Brazil and Central Africa. J African Earth Sci 44:413–427

    Article  Google Scholar 

  • Liu P-P, Liang J, Zhou M-F, Chen WT (2020) Micro-textures and chemical compositions of metamorphic magnetite and ilmenite: Insights from the Mianhuadi mafic complex in SW China. J Asian Earth Sci 192:104264. https://doi.org/10.1016/j.jseaes.2020.104264

    Article  Google Scholar 

  • Loose D, Schenk V (2018) 2.09 Ga old eclogites in the Eburnian-Transamazonian orogen of southern Cameroon: significance for Palaeoproterozoic plate tectonics. Precambrian Res 304:1–11

    Article  Google Scholar 

  • Maniar PD, Piccoli PM (1989) Tectonic discrimination of granitoids. Geol Soc Am Bull 101:635–643

    Article  Google Scholar 

  • Martin H (1993) The mechanisms of petrogenesis of the Archean continental crust comparison with modern processes. Lithos 30:373–388

    Article  Google Scholar 

  • Martin H, Smithies RH, Rapp R, Moyen J-F, Champion D (2005) An overview of adakite, tonalite–trondhjemite–granodiorite (TTG) and sanukitoid: relationships and some implications for crustal evolution. Lithos 79:1–24

    Article  Google Scholar 

  • McCulloch MT, Gamble JA (1991) Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet Sci Lett 102(3/4):358–374. https://doi.org/10.1016/0012-821x(91)90029-h

    Article  Google Scholar 

  • McLennan SM (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Rev Mineral Geochem 21:169–200

    Google Scholar 

  • Middelburg JJ, Van der Weijden CH, Woittiez JRW (1988) Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks. Chem Geol 68:253–273

    Article  Google Scholar 

  • Morrissey LJ, Hand M, Kathleen Lane K, Kelsey DE, Dutch RA (2016) Upgrading iron-ore deposits by melt loss during granulite facies metamorphism. Ore Geol Rev 74:101–121. https://doi.org/10.1016/j.oregeorev.2015.11.012

    Article  Google Scholar 

  • Moudioh C, Soh TL, Ganno S, Nzepang TM, Brando SM, Ghosh R, Kankeu B, Nzenti JP (2020) Tectonic setting of the Bipindi greenstone belt, northwest Congo craton, Cameroon: implications on BIF deposition. J African Earth Sci 17:103–971. https://doi.org/10.1016/j.jafrearsci.2020.103971

    Article  Google Scholar 

  • Mustafa HA, Wang QY, Chen NS, Liao F, Sun M, Salih MA (2016) Geochemistry of Metamafic Dykes from the Quanji Massif: petrogenesis and further evidence for oceanic subduction, late paleoproterozoic. NW China. J Earth Sci 27(4):529. https://doi.org/10.1007/s12583-015-0659-z

    Article  Google Scholar 

  • Nadoll P, Angerer T, Mauk JL, French D, Walshe J (2014) The chemistry of hydrothermal magnetite: a review. Ore Geol Rev 61:1–32

    Article  Google Scholar 

  • Ndema Mbongué JL, Alemnju AE (2020) Petrology and Geochemical Constraints on the Origin of Banded Iron Formation-Hosted Iron Mineralization from the Paleoproterozoic Nyong Serie (Congo Craton, South Cameroon), Pout Njouma Area (Edea North): Evidence for Iron Ore Deposits. Int J Res Innov Appl Sci 5(8):55–72

    Google Scholar 

  • Ndime EN, Ganno S, Nzenti JP (2019) Geochemistry and Pb–Pb geochronology of the Neoarchean Nkout West metamorphosed banded iron formation, southern Cameroon. Int J Earth Sci 108:1551–1570. https://doi.org/10.1007/s00531-019-01719-5

    Article  Google Scholar 

  • Ndong BF, Sobdjou KC, Yannah M, Ntomba MS, Nzenti JP, Mvondo OJ (2016) Origin and tectonic framework of the Ngovayang Iron Massifs, southern Cameroon. Sci Res 4:11–20

    Article  Google Scholar 

  • Ndong BF, Ntomba SM, Ntomb YD, Messi Ottou EJ, Magnekou TRC (2019) Sm-Nd and Rb-Sr datings, petrogenesis and thermometry of the Ngovayang Area (South-West Cameroon): isotopic data insight of recycling crust and convergence orogen. Sci Res 7:17–32. https://doi.org/10.11648/j.sr.20190702.12

    Article  Google Scholar 

  • Ngoran GN, Suh CE, Bowker D, Verla RB, Bafon GT (2016) Petrochemistry of two magnetite bearing systems in the Precambrian Belt of Southern Cameroon. Int J Geosci 7:501–517

    Article  Google Scholar 

  • Nzenti JP, Barbey P, Macaudiére J, Soba D (1988) Origin and evolution of the late Precambrian high-grade Yaoundé gneisses (Cameroon). Precambrian Res 38:91–109

    Article  Google Scholar 

  • Nzepang Tankwa M, Ganno S, Okunlola OA, Tanko Njiosseu EL, Soh Tamehe L, Brice Woguia BK, Motto Mbita AS, Nzenti JP (2020) Petrogenesis and tectonic setting of the Paleoproterozoic Kelle Bidjoka iron formations, Nyong group greenstone belts, southwestern Cameroon. Constraints from petrology, geochemistry, and LA-ICP-MS zircon U-Pb geochronology. Int Geol Rev 63:1737–1757. https://doi.org/10.1080/00206814.2020.1793423

    Article  Google Scholar 

  • O’Connor JT (1965) A classification for quartz-rich igneous rocks based on feldspar ratios. US Geol Surv Prof Pap 525:79–84

    Google Scholar 

  • Owona S, Mvondo Ondoa J, Ekodeck GE (2013) Evidence of quartz, feldspar and amphibole crystal plastic deformations in the Paleoproterozoic Nyong Complex shear zones under amphibolite to granulite conditions (West Central African Fold Belt, SW Cameroon). J Geog Geol 5(3):186–201

    Google Scholar 

  • Patino Douce AE (1999) What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? Geol Soc Spec Publ 168:55–75. https://doi.org/10.1144/GSL.SP.1999.168.01.05

    Article  Google Scholar 

  • Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic classification of granitic rocks. J Petrol 25:956–983

    Article  Google Scholar 

  • Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Cont Mineral Petrol 58:63–81

    Article  Google Scholar 

  • Penaye J, Toteu SF, Tchameni R, Van Schmus WR, Tchakounte J, Ganwa A, Miyem D, Nsifa EN (2004) The 2.1 Ga West Central African Belt in Cameroon: extension and evolution. J African Earth Sci 39:159–164

    Article  Google Scholar 

  • Peng P, Guo JH, Zhai MG, Windley BF, Li TS, Liu F (2012) Genesis of the Hengling magmatic belt in the North China Craton: implications for Paleoproterozoic tectonics. Lithos 148:27–44

    Article  Google Scholar 

  • Peng Z, Wang CL, Tong X, Zhang LC, Zhang B (2018) Element geochemistry and neodymium isotope systematics of the Neoarchean banded iron formations in the Qingyuan greenstone belt, North China Craton. Ore Geol Rev 102:562–584

    Article  Google Scholar 

  • Polat A, Hofmann AW (2003) Alteration and geochemical patterns in the 3.7–3.8 Ga Isua greenstone belt, West Greenland. Precambrian Res 126:197–218

    Article  Google Scholar 

  • Planavsky N, Bekker A, Rouxel OJ, Kamber B, Hofmann A, Knudsen A, Lyons WT (2010) Rare-earth element and yttrium compositions of Archaean and Paleoproterozoic Fe formations revisited: new perspectives on the significance and mechanisms of deposition. Geochim Cosmochim Acta 74:6387–6405

    Article  Google Scholar 

  • Puffer JH, Gorring ML (2005) The Edison magnetite deposits in the context of pre-, syn- and post-orogenic metallogenesis in the Grenville Highlands of New Jersey. Can J Earth Sci 42:1735–1748

    Article  Google Scholar 

  • Rajesh HM (2012) A geochemical perspective on charnockite magmatism in Indian Peninsular. Geosci Front 3:773–788

    Article  Google Scholar 

  • Rapp RP, Norman MD, Laporte D, Yaxley GM, Martin H, Foley SF (2010) Continental formation in the Archean and chemical evolution of the cratonic lithosphere: melt-rock reaction experiments at 3- GPa and petrogenesis of Archean Mg-diorites (Sanukitoids). J Petrol 51:1237–1266

    Article  Google Scholar 

  • Rogers G, Hawkesworth CJ (1989) A geochemical traverse across the North Chilean Andes: evidence for crustal generation from the mantle wedge. Earth Planet Sci Lett 91:271–285

    Article  Google Scholar 

  • Rudnick RL, McLennan SM, Taylor SR (1985) Large ion lithophile elements in rocks from high-pressure granulite facies terrains. Geochim Cosmochim Acta 49:1645–1655

    Article  Google Scholar 

  • Rudnick RL, Barth M, Horn I, McDonough WF (2000) Rutile-bearing refractory eclogites: missing link between continents and depleted mantle. Nature 287:278–281. https://doi.org/10.1126/science.287.5451.278

    Article  Google Scholar 

  • Rudnick R, Gao S (2003) Composition of the continental crust. Treatise Geochem 3:1–64. https://doi.org/10.1016/B0-08-043751-6/03016-4

    Article  Google Scholar 

  • Sklyarov E, Gladkochub DP, Mazukabzov AM, Menshagin YV, Watanabe T, Pisarevsky SA (2003) Neoproterozoic mafic dike swarms of the Sharyzhalgai Metamorphic Massif, Southern Siberian Craton. Precambrian Res 122(1–4):359–376. https://doi.org/10.1016/s0301-9268(02)00219-x

    Article  Google Scholar 

  • Smithies RH (2000) The Archaean tonalite–trondhjemite–granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth Planet Sci Lett 182:115–125

    Article  Google Scholar 

  • Smithies RH, Champion DC (2000) The Archaean high-Mg diorite suite: links to tonalite–trondhjemite–granodiorite magmatism and implications for early Archaean crustal growth. J Petrol 41:1653–1671

    Article  Google Scholar 

  • Smithies R, Champion D, Cassidy K (2003) Formation of Earth’s Early Archaean continental crust. Precambrian Res 127:89–101

    Article  Google Scholar 

  • Soesoo A, Nirgi S, Urtson K, Voolma M (2021) Geochemistry, mineral chemistry and pressure-temperature conditions of the Jõhvi magnetite quartzites and magnetite-rich gneisses, NE Estonia. Estonian J Earth Sci 70(2):71–93. https://doi.org/10.3176/earth.2021.05

    Article  Google Scholar 

  • Soh Tamehe L, Chongtao W, Ganno S, Jeremia Simon S, Djibril Kouankap Nono G, Brice NJP, Lemdjou Y, Htun Lin N (2019) Geology of the Gouap iron deposit, Congo craton, southern Cameroon: implications for iron ore exploration. Ore Geol Rev. https://doi.org/10.1016/j.oregeorev.2019.03.034

    Article  Google Scholar 

  • Soh Tamehe L, Wei CT, Ganno S, Rosière CA, Nzenti JP, Gatse EC, Guanwen L (2021) Depositional age and tectonic environment of the Gouap banded iron formations from the Nyong Group, SW Cameroon: insights from isotopic, geochemical and geochronological studies of drillcore samples. Geosci Front 12:549–572. https://doi.org/10.1016/j.gsf.2020.07.009

    Article  Google Scholar 

  • Suh CE, Cabral AR, Shemang EM, Mbinkar L, Mboudou GGM (2008) Two contrasting iron-ore deposits in the Precambrian mineral belt of Cameroon, West Africa. Explor Min Geol 17:197–207

    Article  Google Scholar 

  • Sun Q, Zhou Y, Wang W, Li C, Zhao T (2017) Formation and evolution of the Paleoproterozoic meta-mafic and associated supracrustal rocks from the Lushan Taihua Complex, southern North China Craton: insights from zircon U-Pb geochronology and whole-rock geochemistry. Precambrian Res. https://doi.org/10.1016/j.precamres.2017.05.018

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of Oceanic Basalts. Implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins. Geol Soc Lond Special Publication 42:313–345

  • Taylor CD, Finn CA, Anderson ED, Bradley DC, Joud MY, Taleb Mohamed A, Horton JD (2016) The F’derik-Zouérate iron district: Mesoarchean and Paleoproterozoic iron formation of the Tiris Complex, Islamic Republic of Mauritania. In: Bouabdellah M, Slack JF (eds) Mineral deposits of North Africa. Springer, Cham, pp 529–73. https://doi.org/10.1007/978-3-319-31733-5_21

  • Teutsong T, Bontognali TRR, Ndjigui PD, Vrijmoed JC, Teagle D, Cooper M, Derek V (2017) Petrography and geochemistry of the Mesoarchean Bikoula banded iron formation in the Ntem complex (Congo craton), Southern Cameroon: implications for its origin. Ore Geol Rev 80:267–288

    Article  Google Scholar 

  • Thompson RN, Morrison MA (1988) Asthenospheric and lower-lithospheric mantle contributions to continental extensional magmatism: an example from the British Tertiary Province. Chem Geol 68(1/2):1–15. https://doi.org/10.1016/0009-2541(88)90082-4

    Article  Google Scholar 

  • Thurston PC, Kamber BS, Whitehouse M (2012) Archean cherts in banded iron formation: insight into Neoarchean ocean chemistry and depositional processes. Precambrian Res 214–215:227–257. https://doi.org/10.1016/j.precamres.2012.04.004

    Article  Google Scholar 

  • Toteu SF, Van Schmus WR, Penaye J, Nyobé JB (1994) U-Pb and Sm-Nd evidence for Eburnean and Pan-African high-grade metamorphism in cratonic rocks of southern Cameroon. Precambrian Res 67:321–347

    Article  Google Scholar 

  • Troll VR, Weis FA, Jonsson E, Andersson UB, Majidi SA, Högdahl K, Harris C, Millet M-A, Chinnasamy SS, Kooijman E, Nilsson KP (2019) Global Fe–O isotope correlation reveals magmatic origin of Kiruna-type apatite-iron-oxide ores. Nat Commun. https://doi.org/10.1038/s41467-019-09244-4

    Article  Google Scholar 

  • Tsoungui PNE, Ganno S, Tanko Njiosseu EL, Ndema Mbongue JL, Woguia BM, Soh Tamehe L, Takodjou Wambo JD, Nzenti JP (2019) Geochemical constraints on the origin and tectonic setting of the serpentinized peridotites from the Paleoproterozoic Nyong series, Eseka area, SW Cameroon. Acta Geochim. https://doi.org/10.1007/s11631-019-00368-4

    Article  Google Scholar 

  • Van Schmus WR, Oliveira EP, Da Silva Filho AF, Toteu SF, Penaye J, Guimarães IP (2008) Proterozoic links between the Borborema Province, NE Brazil, and the Central African fold belt. Geol Soc Lond Spec Publ 294(1):69–99

    Article  Google Scholar 

  • Wang W, Zhang L, Lan C, Dai Y (2014) Petrology and geochemistry of the Wangjiazhuang banded iron formation and associated supracrustal rocks from the Wutai greenstone belt in the North China Craton: implications for their origin and tectonic setting. Precambrian Res 255:603–626. https://doi.org/10.1016/j.precamres.2014.08.002

    Article  Google Scholar 

  • Ward CD, McArthur JM, Walsh JN (1992) Rare earth element behaviour during evolution and alteration of the Dartmoor granite, SW England. J Petrol 33:785–815

    Article  Google Scholar 

  • Whalen JB, Percival JA, McNicoll VJ, Longstaffe FJ (2002) A mainly crustal origin for tonalitic granitoid rocks, Superior Province, Canada: implications for late Archean tectonomagmatic processes. J Petrol 43:1551–1570

    Article  Google Scholar 

  • Wood DA (1980) The application of a Th–Hf–Ta diagram to problems of tectono-magmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth Planet Sci Lett 50:11–30

    Article  Google Scholar 

  • Woodhead JD, Hergt JM, Davidson JP, Eggins SM (2001) Hafnium isotope evidence for ‘conservative’ element mobility during subduction zone processes. Earth Planet Sci Lett 192:331–346

    Article  Google Scholar 

  • Zhao JH, Zhou MF, Zheng JP (2010) Metasomatic mantle source and crustal contamination for the formation of the neoproterozoic mafic dike swarm in the Northern Yangtze Block. South China Lithos 115(1–4):177–189. https://doi.org/10.1016/j.lithos.2009.12.001

    Article  Google Scholar 

  • Zhou Y, Zhao T, Zhai M, Gao J, Sun Q (2014) Petrogenesis of the Archean tonalite-trondhjemite-granodiorite (TTG) and granites in the Lushan area, southern margin of the North China Craton: Implications for crustal accretion and transformation. Precambrian Res 255:514–537

    Article  Google Scholar 

  • Zou H, Zindler A, Xu X, Qi Q (2000) Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic Basalts in SE China: mantle sources, regional variations, and tectonic significance. Chem Geol 171(1/2):33–47. https://doi.org/10.1016/s0009-2541(00)00243-6

    Article  Google Scholar 

Download references

Acknowledgements

This research publication is part of the PhD thesis of the first author. Funding for the research is provided by the African Union through the Pan-African University scholarship scheme at the Pan African University Institute of Life and Earth Sciences (including health and agriculture), PAULESI. The authors are grateful to West African Minerals Corporation for providing drillcore structural data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tasin Godlove Bafon.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bafon, T.G., Bolarinwa, A.T., Suh, C.E. et al. Petrogenetic characterization of the host rocks of the Sanaga iron ore prospect, southern Cameroon. Acta Geochim 42, 195–220 (2023). https://doi.org/10.1007/s11631-022-00574-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-022-00574-7

Keywords

Navigation