Skip to main content
Log in

Geochemistry of metamafic dykes from the Quanji massif: Petrogenesis and further evidence for oceanic subduction, Late Paleoproterozoic, NW China

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

A suite of ~1.84–1.92 Ga metamafic dykes within the paragneiss suite (khondalite) of the Quanji massif in NW China, has been chosen in this study for further understanding the tectonic evolution and possible links to the global Columbia supercontinent. Occurrence and field relations suggest that they were formed coevally with a previous studied ~1.83–1.85 Ga metamafic dyke swarms. Whole-rock major and trace elemental geochemistry suggests precursor magma of the amphibolites being generated from a volcanic arc-related tectonic setting rather than a back-arc environment where the metamafic dyke swarms were emplaced. The metamafic dykes show enrichment of LREE and strongly negative anomalies for Ta-Nb, Zr-Hf and Ti, have high SiO2 (49.3 wt.%–52.5 wt.%) but low MgO (6.40 wt.%–7.76 wt.%) contents and Mg# (Mg#=[100×(MgO/40.3)]/[MgO/40.3+FeO/71.8]) values (45.7–52.1), suggesting evolved precursor magma. The high values of La/Ta (22.2–42.8) and La/Nb (1.71–2.47), mildly negative εNd(t) values (-2.51–0.15), with depleted mantle model ages (T DM) of 2.45–2.84 Ga, suggest that their precursor magmas were possibly derived from a subduction-related fluid metasomatized Archean sub-continental lithospheric mantle. This study provides further evidence for oceanic plate subduction prevailing before or around ~1.85 Ga, which confirms a prolonged subduction-accretion-collision history in the NW China which is possibly linked to the assembly of the Columbia supercontinent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Ahijado, A., Casillas, R., Hernández-Pacheco, A., 2001. The Dyke Swarms of the Amanay Massif, Fuerteventura, Canary Islands (Spain). Journal of Asian Earth Sciences, 19(3): 333–345. doi:10.1016/s1367-9120(99)00066-8

    Article  Google Scholar 

  • Allen, C. M., 2000. Evolution of a Post-Batholith Dike Swarm in Central Coastal Queensland, Australia: Arc-Front to Backarc? Lithos, 51(4): 331–349. doi:10.1016/s0024-4937(99)00068-7

    Article  Google Scholar 

  • Beier, C., Stracke, A., Haase, K. M., 2007. The Peculiar Geochemical Signatures of São Miguel (Azores) Lavas: Metasomatised or Recycled Mantle Sources? Earth and Planetary Science Letters, 259(1/2): 186–199. doi:10.1016/j.epsl.2007.04.038

    Article  Google Scholar 

  • Bleeker, W., 2003. The Late Archean Record: A Puzzle in ca. 35 Pieces. Lithos, 71(2–4): 99–134. doi:10.1016/j.lithos.2003.07.003

    Google Scholar 

  • Chakrabarti, R., Basu, A. R., Paul, D. K., 2007. Nd-Hf-Sr-Pb Isotopes and Trace Element Geochemistry of Proterozoic Lamproites from Southern India: Subducted Komatiite in the Source. Chemical Geology, 236(3/4): 291–302. doi:10.1016/j.chemgeo.2006.10.006

    Article  Google Scholar 

  • Chen, N. S., Gong, S. L., Sun, M., et al., 2009. Precambrian Evolution of the Quanji Block, Northeastern Margin of Tibet: Insights from Zircon U-Pb and Lu-Hf Isotope Compositions. Journal of Asian Earth Sciences, 35(3/4): 367–376. doi:10.1016/j.jseaes.2008.10.004

    Article  Google Scholar 

  • Chen, N. S., Liao, F. X., Wang, L., et al., 2013a. Late Paleoproterozoic Multiple Metamorphic Events in the Quanji Massif: Links with Tarim and North China Cratons and Implications for Assembly of the Columbia Supercontinent. Precambrian Research, 228: 102–116. doi:10.1016/j.precamres.2013.01.013

    Article  Google Scholar 

  • Chen, N. S., Gong, S. L., Xia, X. P., et al., 2013b. Zircon Hf Isotope of Yingfeng Rapakivi Granites from the Quanji Massif and ~2.7 Ga Crustal Growth. Journal of Earth Science, 24(1): 29–41. doi:10.1007/s12583-013-0309-2

    Article  Google Scholar 

  • Chen, N. S., Wang, Q. Y., Chen, Q., et al., 2007. Components and Metamorphism of the Basements of the Qaidam and Oulongbuluke Micro-Continental Blocks, and a Tentative Interpretation of Paleocontinental Evolution in NW-Central China. Earth Science Frontiers, 14: 43–55 (in Chinese with English Abstract)

    Google Scholar 

  • Chen, N. S., Zhang, L., Sun, M., et al., 2012. U-Pb and Hf Isotopic Compositions of Detrital Zircons from the Paragneisses of the Quanji Massif, NW China: Implications for Its Early Tectonic Evolutionary History. Journal of Asian Earth Sciences, 54/55: 110–130. doi:10.1016/j.jseaes.2012.04.006

    Article  Google Scholar 

  • Choi, S. H., Mukasa, S. B., Kwon, S. T., et al., 2006. Sr, Nd, Pb and Hf Isotopic Compositions of Late Cenozoic Alkali Basalts in South Korea: Evidence for Mixing between the Two Dominant Asthenospheric Mantle Domains beneath East Asia. Chemical Geology, 232(3/4): 134–151. doi:10.1016/j.chemgeo.2006.02.014

    Article  Google Scholar 

  • Condie, K. C., Viljoen, M. J., Kable, E. J. D., 1977. Effects of Alteration on Element Distributions in Archean Tholeiites from the Barberton Greenstone Belt, South Africa. Contributions to Mineralogy and Petrology, 64(1): 75–89. doi:10.1007/bf00375286

    Article  Google Scholar 

  • Condie, K. C., 1997. Sources of Proterozoic Mafic Dyke Swarms: Constraints from Th/Ta and La/Yb Ratios. Precambrian Research, 81(1/2): 3–14. doi:10.1016/s0301-9268(96)00020-4

    Article  Google Scholar 

  • Cullers, R. L., Yeh, L. T., Chaudhuri, S., et al., 1974. Rare Earth Elements in Silurian Pelitic Schists from N.W. Maine. Geochimica et Cosmochimica Acta, 38(3): 389–400. doi:10.1016/0016-7037(74)90133-1

    Article  Google Scholar 

  • Damian Nance, R., Brendan Murphy, J., Santosh, M., 2014. The Supercontinent Cycle: A Retrospective Essay. Gondwana Research, 25(1): 4–29. doi:10.1016/j.gr.2012.12.026

    Article  Google Scholar 

  • Ernst, R. E., Bleeker, W., Söderlund, U., et al., 2013. Large Igneous Provinces and Supercontinents: Toward Completing the Plate Tectonic Revolution. Lithos, 174: 1–14. doi:10.1016/j.lithos.2013.02.017

    Article  Google Scholar 

  • Ernst, R. E., Buchan, K. L., 2001a. Large Mafic Magmatic Events through Time and Links to Mantle Plume Heads. In: Ernst, R. E., Buchan, K. L., eds., Mantle Plumes: Their Identification through Time. Special Paper Geological Society of America, 352: 483–575

    Google Scholar 

  • Ernst, R. E., Buchan, K. L., 2001b. The Use of Mafic Dike Swarms in Identifying and Locating Mantle Plumes. In: Ernst, R. E., Buchan, K. L., eds., Mantle Plumes: Their Identification through Time. Special Paper Geological Society of America, 352: 247–265

    Google Scholar 

  • Ernst, R. E., Buchan, K. L., 1997. Giant Radiating Dyke Swarms: Their Use in Identifying Pre-Mesozoic Large Igneous Provinces and Mantle Plumes. In: Mahoney, J. J., Coffin, M. E., eds., Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. Geophysical Monograph, 100: 297–333

    Google Scholar 

  • Ernst, R. E., Head, J. W., Parfitt, E., et al., 1995. Giant Radiating Dyke Swarms on Earth and Venus. Earth-Science Reviews, 39(1/2): 1–58. doi:10.1016/0012-8252(95)00017-5

    Article  Google Scholar 

  • Ernst, R. E., Wingate, M. T. D., Buchan, K. L., et al., 2008. Global Record of 1 600–700 Ma Large Igneous Provinces (LIPs): Implications for the Reconstruction of the Proposed Nuna (Columbia) and Rodinia Supercontinents. Precambrian Research, 160(1/2): 159–178. doi:10.1016/j.precamres.2007.04.019

    Article  Google Scholar 

  • Fan, W. M., Guo, F., Wang, Y. J., et al., 2004. Late Mesozoic Volcanism in the Northern Huaiyang Tectono-Magmatic Belt, Central China: Partial Melts from a Lithospheric Mantle with Subducted Continental Crust Relicts beneath the Dabie Orogen? Chemical Geology, 209(1/2): 27–48. doi:10.1016/j.chemgeo.2004.04.020

    Article  Google Scholar 

  • Ge, R. F., Zhu, W. B., Wu, H. L., et al., 2013. Zircon U-Pb Ages and Lu-Hf Isotopes of Paleoproterozoic Metasedimentary Rocks in the Korla Complex, NW China: Implications for Metamorphic Zircon Formation and Geological Evolution of the Tarim Craton. Precambrian Research, 231: 1–18. doi:10.1016/j.precamres.2013.03.003

    Article  Google Scholar 

  • Geringer, G. J., 1979. The Origin and Tectonic Setting of Amphibolites in Part of Namaqua Metamorphic Belt, South Africa, Traa’. Geological Society South Africa, 82: 287–303

    Google Scholar 

  • Goldberg, A. S., 2010. Dyke Swarms as Indicators of Major Extensional Events in the 1.9–1.2 Ga Columbia Supercontinent. Journal of Geodynamics, 50(3/4): 176–190. doi:10.1016/j.jog.2010.01.017

    Article  Google Scholar 

  • Gong, S. L., Chen, N. S., Wang, Q. Y., et al., 2012. Early Paleoproterozoic Magmatism in the Quanji Massif, Northeastern Margin of the Qinghai-Tibet Plateau and Its Tectonic Significance: LA-ICPMS U-Pb Zircon Geochronology and Geochemistry. Gondwana Research, 21(1): 152–166. doi:10.1016/j.gr.2011.07.011

    Article  Google Scholar 

  • Gong, S. L., Chen, N. S., Geng, H. Y., et al., 2014. Zircon Hf Isotopes and Geochemistry of the Early Paleoproterozoic High-Sr Low-Y Quartz-Diorite in the Quanji Massif, NW China: Crustal Growth and Tectonic Implications. Journal of Earth Science, 25(1): 74–86. doi:10.1007/s12583-014-0401-2

    Article  Google Scholar 

  • Gust, D., Arculus, R. J., Kersting, A. B., 1997. Aspects of Magma Sources and Processes in the Honshu Arc. The Canadian Mineralogist, 35: 347–365

    Google Scholar 

  • Harlan, S. S., Geissman, J. W., Snee, L. W., 2008. Paleomagnetism of Proterozoic Mafic Dikes from the Tobacco Root Mountains, Southwest Montana. Precambrian Research, 163(3/4): 239–264. doi:10.1016/j.precamres.2007.12.002

    Article  Google Scholar 

  • Hoffman, P. F., 1997. Tectonic Genealogy of North America. In: van der Pluijm, B. A., Marshak, S., eds., Earth Structure: An Introduction to Structural Geology and Tectonics. McGraw-Hill, New York. 459–464

    Google Scholar 

  • Hofmann, A. W., Jochum, K. P., 1996. Source Characteristics Derived from very Incompatible Trace Elements in Mauna Loa and Mauna Kea Basalts, Hawaii Scientific Drilling Project. Journal of Geophysical Research: Solid Earth, 101(B5): 11831–11839. doi:10.1029/95jb03701

    Article  Google Scholar 

  • Hou, G. T., 2012. Mechanism for Three Types of Mafic Dyke Swarms. Geoscience Frontiers, 3(2): 217–223. doi:10.1016/j.gsf.2011.10.003

    Article  Google Scholar 

  • Huang, W., Zhang, L., Ba, J., et al., 2011. Detrital Zircon LA-ICP-MS U-Pb Dating for K-feldspar Leptite of Quanji Massif in the North Margin of Qaidam Block: Constraint on the Age of Dakendaban Group. Geological Bulletin of China, 30: 1353–1359 (in Chinese with English Abstract)

    Google Scholar 

  • Kepezhinskas, P., McDermott, F., Defant, M. J., et al., 1997. Trace Element and Sr-Nd-Pb Isotopic Constraints on a Three-Component Model of Kamchatka Arc Petrogenesis. Geochimica et Cosmochimica Acta, 61(3): 577–600. doi:10.1016/s0016-7037(96)00349-3

    Article  Google Scholar 

  • Kusky, T. M., Li, J. H., Santosh, M., 2007. The Paleoproterozoic North Hebei Orogen: North China Craton’s Collisional Suture with the Columbia Supercontinent. Gondwana Research, 12(1/2): 4–28. doi:10.1016/j.gr.2006.11.012

    Article  Google Scholar 

  • Kusky, T. M., Santosh, M., 2009. The Columbia Connection in North China. Geological Society, London, Special Publications, 323(1): 49–71. doi:10.1144/sp323.3

    Article  Google Scholar 

  • La Flèche, M. R., Camiré, G., Jenner, G. A., 1998. Geochemistry of Post-Acadian, Carboniferous Continental Intraplate Basalts from the Maritimes Basin, Magdalen Islands, Québec, Canada. Chemical Geology, 148(3/4): 115–136. doi:10.1016/s0009-2541(98)00002-3

    Article  Google Scholar 

  • Li, X. H., Liu, D. Y., Sun, M., et al., 2004. Precise Sm-Nd and U-Pb Isotopic Dating of the Supergiant Shizhuyuan Polymetallic Deposit and Its Host Granite, SE China. Geological Magazine, 141(2): 225–231. doi:10.1017/s0016756803008823

    Article  Google Scholar 

  • Liao, F. X., Zhang, L., Wang Q. Y., et al., 2014. Geochronology and Geochemistry of the Dike-Swarm Garnet-Free Amphibolites in the Quanji Massif, NW China: Late Paleoproterozoic Back Arc Magmatism and Links to Amalgamation of the Tarim and North China Cratons and Assembly of the Columbia Supercontinent. Precambrian Research, 249: 33–56

    Article  Google Scholar 

  • Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34–43. doi:10.1016/j.chemgeo.2008.08.004

    Article  Google Scholar 

  • Lu, J. S., Wang, G. D., Wang, H., et al., 2013. Metamorphic P-T-t Paths Retrieved from the Amphibolites, Lushan Terrane, Henan Province and Reappraisal of the Paleoproterozoic Tectonic Evolution of the Trans-North China Orogen. Precambrian Research, 238: 61–77. doi:10.1016/j.precamres.2013.09.019

    Article  Google Scholar 

  • Lu, S. N., 2002. Preliminary Study of Precambrian Geology in the Northern Tibet-Qinghai Plateau. Geological Publishing House, Beijing (in Chinese)

    Google Scholar 

  • Lu, S. N., Li, H. K., Zhang, C. L., et al., 2008. Geological and Geochronological Evidence for the Precambrian Evolution of the Tarim Craton and Surrounding Continental Fragments. Precambrian Research, 160(1/2): 94–107. doi:10.1016/j.precamres.2007.04.025

    Article  Google Scholar 

  • Ma, X. X., Shu, L. S., Santosh, M., et al., 2013. Paleoproterozoic Collisional Orogeny in Central Tianshan: Assembling the Tarim Block within the Columbia Supercontinent. Precambrian Research, 228: 1–19. doi:10.1016/j.precamres.2013.01.009

    Article  Google Scholar 

  • Mayborn, K. R., Lesher, C. E., 2004. Paleoproterozoic Mafic Dike Swarms of Northeast Laurentia: Products of Plumes or Ambient Mantle? Earth and Planetary Science Letters, 225(3/4): 305–317. doi:10.1016/j.epsl.2004.06.014

    Article  Google Scholar 

  • Meert, J. G., 2002. Paleomagnetic Evidence for a Paleo-Mesoproterozoic Supercontinent Columbia. Gondwana Research, 5(1): 207–215. doi:10.1016/s1342-937x(05)70904-7

    Article  Google Scholar 

  • Meert, J. G., 2012. What’s in a Name? The Columbia (Paleopangaea/Nuna) Supercontinent. Gondwana Research, 21(4): 987–993. doi:10.1016/j.gr.2011.12.002

    Article  Google Scholar 

  • Mohanty, S., 2012. Spatio-Temporal Evolution of the Satpura Mountain Belt of India: A Comparison with the Capricorn Orogen of Western Australia and Implication for Evolution of the Supercontinent Columbia. Geoscience Frontiers, 3(3): 241–267. doi:10.1016/j.gsf.2011.10.005

    Article  Google Scholar 

  • McCulloch, M. T., Gamble, J. A., 1991. Geochemical and Geodynamical Constraints on Subduction Zone Magmatism. Earth and Planetary Science Letters, 102(3/4): 358–374. doi:10.1016/0012-821x(91)90029-h

    Article  Google Scholar 

  • Park, J. K., Buchan, K. L., Harlan, S. S., 1995. A Proposed Giant Radiating Dyke Swarm Fragmented by the Separation of Laurentia and Australia Based on Paleomagnetism of ca. 780 Ma Mafic Intrusions in Western North America. Earth and Planetary Science Letters, 132(1–4): 129–139. doi:10.1016/0012-821x(95)00059-l

    Article  Google Scholar 

  • Pearce, J. A., 1996. A User’s Guide to Basalt Discrimination Diagrams. In: Wyman, D. A., ed., Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulfide Exploration. Geological Association of Canada, Short Course Notes, 12: 79–113

    Google Scholar 

  • Pearce, J. A., 1982. Trace Element Characteristics of the Lava from Destructive Plate Boundaries in Andesites. John Wiley and Sons, Chichester. 525–547

    Google Scholar 

  • Pearce, J. A., Norry, M. J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1): 33–47. doi:10.1007/bf00375192

    Article  Google Scholar 

  • Pearce, J. A., Cann, J. R., 1973. Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses. Earth and Planetary Science Letters, 19(2): 290–300. doi:10.1016/0012-821x(73)90129-5

    Article  Google Scholar 

  • Peng, P., Zhai, M. G., Guo, J. H., et al., 2007. Nature of Mantle Source Contributions and Crystal Differentiation in the Petrogenesis of the 1.78 Ga Mafic Dykes in the Central North China Craton. Gondwana Research, 12(1/2): 29–46. doi:10.1016/j.gr.2006.10.022

    Article  Google Scholar 

  • Piper, J. D. A., Zhang, J. S., Huang, B., et al., 2011. Palaeomagnetism of Precambrian Dyke Swarms in the North China Shield: The ~1.8 Ga LIP Event and Crustal Consolidation in Late Palaeoproterozoic Times. Journal of Asian Earth Sciences, 41(6): 504–524. doi:10.1016/j.jseaes.2011.03.010

    Article  Google Scholar 

  • Roberts, N. M. W., 2013. The Boring Billion? Lid Tectonics, Continental Growth and Environmental Change Associated with the Columbia Supercontinent. Geoscience Frontiers, 4(6): 681–691. doi:10.1016/j.gsf.2013.05.004

    Article  Google Scholar 

  • Rogers, J. J. W., 1996. A History of Continents in the Past Three Billion Years. The Journal of Geology, 104(1): 91–107. doi:10.1086/629803

    Article  Google Scholar 

  • Rogers, J. J. W., 2012. Did Natural Fission of 235U in the Earth Lead to Formation of the Supercontinent Columbia? Geoscience Frontiers, 3(4): 369–374. doi:10.1016/j.gsf.2012.03.005

    Article  Google Scholar 

  • Rogers, J. J. W., Santosh, M., 2002. Configuration of Columbia: A Mesoproterozoic Supercontinent. Gondwana Research, 5(1): 5–22. doi:10.1016/s1342-937x(05)70883-2

    Article  Google Scholar 

  • Rogers, J. J. W., Santosh, M., 2003. Supercontinents in Earth History. Gondwana Research, 6(3): 357–368. doi:10.1016/s1342-937x(05)70993-x

    Article  Google Scholar 

  • Rollinson, H. R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman, New York. 352

    Google Scholar 

  • Rudnick, R. L., Fountain, D. M., 1995. Nature and Composition of the Continental Crust: A Lower Crustal Perspective. Reviews of Geophysics, 33(3): 267–309. doi:10.1029/95rg01302

    Article  Google Scholar 

  • Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. In: Rudnick, R. L., ed., The Crust. Elsevier-Pergamon, Oxford, 3: 1–64

    Google Scholar 

  • Santosh, M., 2010. Assembling North China Craton within the Columbia Supercontinent: The Role of Double-Sided Subduction. Precambrian Research, 178(1–4): 149–167. doi:10.1016/j.precamres.2010.02.003

    Article  Google Scholar 

  • Santosh, M., Liu, D. Y., Shi, Y. R., et al., 2013. Paleoproterozoic Accretionary Orogenesis in the North China Craton: A SHRIMP Zircon Study. Precambrian Research, 227: 29–54. doi:10.1016/j.precamres.2011.11.004

    Article  Google Scholar 

  • Santosh, M., Maruyama, S., Komiya, T., et al., 2010. Orogens in the Evolving Earth: From Surface Continents to ‘Lost Continents’ at the Core-Mantle Boundary. Geological Society, London, Special Publications, 338(1): 77–116. doi:10.1144/sp338.5

    Article  Google Scholar 

  • Santosh, M., Tsunogae, T., Li, J. H., et al., 2007a. Discovery of Sapphirine-Bearing Mg-Al Granulites in the North China Craton: Implications for Paleoproterozoic Ultrahigh Temperature Metamorphism. Gondwana Research, 11(3): 263–285. doi:10.1016/j.gr.2006.10.009

    Article  Google Scholar 

  • Santosh, M., Wilde, S., Li, J., 2007b. Timing of Paleoproterozoic Ultrahigh-Temperature Metamorphism in the North China Craton: Evidence from SHRIMP U-Pb Zircon Geochronology. Precambrian Research, 159(3/4): 178–196. doi:10.1016/j.precamres.2007.06.006

    Article  Google Scholar 

  • Shinjo, R., Chung, S. L., Kato, Y., et al., 1999. Geochemical and Sr-Nd Isotopic Characteristics of Volcanic Rocks from the Okinawa Trough and Ryukyu Arc: Implications for the Evolution of a Young, Intracontinental Back Arc Basin. Journal of Geophysical Research: Solid Earth, 104(B5): 10591–10608. doi:10.1029/1999jb900040

    Article  Google Scholar 

  • Sklyarov, E., Gladkochub, D. P., Mazukabzov, A. M., et al., 2003. Neoproterozoic Mafic Dike Swarms of the Sharyzhalgai Metamorphic Massif, Southern Siberian Craton. Precambrian Research, 122(1–4): 359–376. doi:10.1016/s0301-9268(02)00219-x

    Article  Google Scholar 

  • Sobolev, A. V., Hofmann, A. W., Nikogosian, I. K., 2000. Recycled Oceanic Crust Observed in ‘Ghost Plagioclase’ within the Source of Mauna Loa Lavas. Nature, 404: 986–990

    Article  Google Scholar 

  • Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. doi:10.1144/gsl.sp.1989.042.01.19

    Article  Google Scholar 

  • Tanaka, T., Togashi, S., Kamioka, H., et al., 2000. JNdi-1: A Neodymium Isotopic Reference in Consistency with LaJolla Neodymium. Chemical Geology, 168(3/4): 279–281. doi:10.1016/s0009-2541(00)00198-4

    Article  Google Scholar 

  • Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford Press. 1–312

    Google Scholar 

  • Taylor, P. N., Jones, N. W., Moorbuth, S., 1984. Isotopic Assessment of Relative Contributions from Crust and Mantle Sources to Magma Genesis of Precambrian Granitoid Rocks. Phil. Trans. Research Society London, A310: 605–625

    Article  Google Scholar 

  • Thompson, R. N., Morrison, M. A., 1988. Asthenospheric and Lower-Lithospheric Mantle Contributions to Continental Extensional Magmatism: An Example from the British Tertiary Province. Chemical Geology, 68(1/2): 1–15. doi:10.1016/0009-2541(88)90082-4

    Article  Google Scholar 

  • Trap, P., Faure, M., Lin, W., et al., 2012. Paleoproterozoic Tectonic Evolution of the Trans-North China Orogen: Toward a Comprehensive Model. Precambrian Research, 222/223: 191–211. doi:10.1016/j.precamres.2011.09.008

    Article  Google Scholar 

  • Walker, K. R., Joplin, G. A., Lovering, J. F., et al., 1959. Metamorphic and Metasomatic Convergence of Basic Igneous Rocks and Lime-Magnesia Sediments of the Precambrian of North-Western Queensland. Journal of the Geological Society of Australia, 6(2): 149–177. doi:10.1080/00167615908728504

    Article  Google Scholar 

  • Wan, Y. S., Zhang, J. X., Yang, J. S., et al., 2006. Geochemistry of High-Grade Metamorphic Rocks of the North Qaidam Mountains and Their Geological Significance. Journal of Asian Earth Sciences, 28(2/3): 174–184. doi:10.1016/j.jseaes.2005.09.018

    Google Scholar 

  • Wang, Q. Y., 2009. Components, Petrogenesis and Polymetamorphism of the Supracrustal Sequences of the Quanji Block Basement in Delingha Region, NW China, and Tectonic Evolution: [Dissertation]. China University of Geosciences, Wuhan (in Chinese with English Abstract)

    Google Scholar 

  • Wang, Q. Y., Chen, N. S., Li, X. Y., et al., 2008. LA-ICPMS Zircon U-Pb Geochronological Constraints on the Tectonothermal Evolution of the Early Paleoproterozoic Dakendaban Group in the Quanji Block, NW China. Science Bulletin, 53(18): 2849–2858. doi:10.1007/s11434-008-0265-x

    Article  Google Scholar 

  • Wang, Y. J., Zhao, G. C., Fan, W. M., et al., 2007. LA-ICP-MS U-Pb Zircon Geochronology and Geochemistry of Paleoproterozoic Mafic Dykes from Western Shandong Province: Implications for Back-Arc Basin Magmatism in the Eastern Block, North China Craton. Precambrian Research, 154(1/2): 107–124. doi:10.1016/j.precamres.2006.12.010

    Article  Google Scholar 

  • Wang, Y. J., Zhao, G. C., Cawood, P. A., et al., 2008. Geochemistry of Paleoproterozoic (~1 770 Ma) Mafic Dikes from the Trans-North China Orogen and Tectonic Implications. Journal of Asian Earth Sciences, 33(1/2): 61–77. doi:10.1016/j.jseaes.2007.10.018

    Article  Google Scholar 

  • Wilde, S. A., Zhao, G. C., 2005. Archean to Paleoproterozoic Evolution of the North China Craton. Journal of Asian Earth Sciences, 24(5): 519–522. doi:10.1016/j.jseaes.2004.06.004

    Article  Google Scholar 

  • Wilde, S. A., Zhao, G. C., Sun, M., 2002. Development of the North China Craton during the Late Archaean and Its Final Amalgamation at 1.8 Ga: Some Speculations on Its Position within a Global Palaeoproterozoic Supercontinent. Gondwana Research, 5(1): 85–94. doi:10.1016/s1342-937x(05)70892-3

    Article  Google Scholar 

  • Wood, D. A., 1980. The Application of a Th-Hf-Ta Diagram to Problems of Tectono-Magmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1): 11–30. doi:10.1016/0012-821x(80)90116-8

    Article  Google Scholar 

  • Wu, F. Y., Zhao, G. C., Wilde, S. A., et al., 2005. Nd Isotopic Constraints on Crustal Formation in the North China Craton. Journal of Asian Earth Sciences, 24(5): 523–545. doi:10.1016/j.jseaes.2003.10.011

    Article  Google Scholar 

  • Xia, X. P., Sun, M., Zhao, G. C., et al., 2006. LA-ICP-MS U-Pb Geochronology of Detrital Zircons from the Jining Complex, North China Craton and Its Tectonic Significance. Precambrian Research, 144(3/4): 199–212. doi:10.1016/j.precamres.2005.11.004

    Article  Google Scholar 

  • Xiao, Q. H., 2004. Age of Yingfeng Rapakivi Granite Pluton on the North Flank of Qaidam and Its Geological Significance. Science in China Series D: Earth Sciences, 47(4): 357–365. doi:10.1360/02yd0472

    Article  Google Scholar 

  • Xu, Z. Q., Yang, J. S., Wu, C. L., et al., 2006. Timing and Mechanism of Formation and Exhumation of the Northern Qaidam Ultrahigh-Pressure Metamorphic Belt. Journal of Asian Earth Sciences, 28(2/3): 160–173. doi:10.1016/j.jseaes.2005.09.016

    Google Scholar 

  • Yang, J. H., Sun, J. F., Chen, F., et al., 2007. Sources and Petrogenesis of Late Triassic Dolerite Dikes in the Liaodong Peninsula: Implications for Post-Collisional Lithosphere Thinning of the Eastern North China Craton. Journal of Petrology, 48(10): 1973–1997. doi:10.1093/petrology/egm046

    Article  Google Scholar 

  • Yin, C. Q., Zhao, G. C., Sun, M., et al., 2009. LA-ICP-MS U-Pb Zircon Ages of the Qianlishan Complex: Constrains on the Evolution of the Khondalite Belt in the Western Block of the North China Craton. Precambrian Research, 174(1/2): 78–94. doi:10.1016/j.precamres.2009.06.008

    Article  Google Scholar 

  • Zhai, M. G., Santosh, M., 2013. Metallogeny of the North China Craton: Link with Secular Changes in the Evolving Earth. Gondwana Research, 24(1): 275–297. doi:10.1016/j.gr.2013.02.007

    Article  Google Scholar 

  • Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 20(1): 6–25. doi:10.1016/j.gr.2011.02.005

    Article  Google Scholar 

  • Zhang, C. L., Li, Z. X., Li, X. H., et al., 2009. Neoproterozoic Mafic Dyke Swarms at the Northern Margin of the Tarim Block, NW China: Age, Geochemistry, Petrogenesis and Tectonic Implications. Journal of Asian Earth Sciences, 35(2): 167–179. doi:10.1016/j.jseaes.2009.02.003

    Article  Google Scholar 

  • Zhang, J. X., Wan, Y. S., Xu, Z. Q., et al., 2001. Discovery of Basic Granulite and Its Formation Age in Delingha Area, North Qaidam Mountains. Acta Petrologica Sinica, 17: 453–458 (in Chinese with English Abstract)

    Google Scholar 

  • Zhang, L., Liao, F. X., Ba, J., et al., 2011. Mineral Evolution and Zircon Geochronology of Mafic Enclave in Granitic Gneiss of the Quanji Block and Implications for Paleoproterozoic Regional Metamorphism. Earth Science Frontiers, 18: 79–84 (in Chinese with English Abstract)

    Google Scholar 

  • Zhang, L., Wang, Q. Y., Chen, N. S., et al., 2014. Geochemistry and Detrital Zircon U-Pb and Hf Isotopes of the Paragneiss Suite from the Quanji Massif, SE Tarim Craton: Implications for Paleoproterozoic Tectonics in NW China. Journal of Asian Earth Sciences, 95: 33–50. doi:10.1016/j.jseaes.2014.05.014

    Article  Google Scholar 

  • Zhao, G. C., 2001. Palaeoproterozoic Assembly of the North China Craton. Geological Magazine, 138(1): 87–91. doi:10.1017/s0016756801005040

    Article  Google Scholar 

  • Zhao, G. C., Kroner, A., 2007. Geochemistry of Neoarchean (ca. 2.55–2.50 Ga) Volcanic and Ophiolitic Rocks in the Wutaishan Greenstone Belt, Central Orogenic Belt, North China Craton: Implications for Geodynamic Setting and Continental Growth: Discussion. Geological Society of America Bulletin, 119(3/4): 487–489. doi:10.1130/b26022.1

    Article  Google Scholar 

  • Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 1998. Thermal Evolution of Archean Basement Rocks from the Eastern Part of the North China Craton and Its Bearing on Tectonic Setting. International Geology Review, 40(8): 706–721. doi:10.1080/00206819809465233

    Article  Google Scholar 

  • Zhao, G. C., Cawood, P. A., Lu, L. Z., 1999. Petrology and P-T History of the Wutai Amphibolites: Implications for Tectonic Evolution of the Wutai Complex, China. Precambrian Research, 93(2/3): 181–199. doi:10.1016/s0301-9268(98)00090-4

    Article  Google Scholar 

  • Zhao, G. C., Cawood, P. A., Wilde, S. A., et al., 2000. Metamorphism of Basement Rocks in the Central Zone of the North China Craton: Implications for Paleoproterozoic Tectonic Evolution. Precambrian Research, 103(1/2): 55–88. doi:10.1016/s0301-9268(00)00076-0

    Article  Google Scholar 

  • Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 2001. Archean Blocks and Their Boundaries in the North China Craton: Lithological, Geochemical, Structural and P-T Path Constraints and Tectonic Evolution. Precambrian Research, 107(1/2): 45–73. doi:10.1016/s0301-9268(00)00154-6

    Article  Google Scholar 

  • Zhao, G. C., Cawood, P. A., Wilde, S. A., et al., 2002a. Review of Global 2.1–1.8 Ga Orogens: Implications for a Pre-Rodinia Supercontinent. Earth-Science Reviews, 59(1–4): 125–162. doi:10.1016/s0012-8252(02)00073-9

    Article  Google Scholar 

  • Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 2002b. SHRIMP U-Pb Zircon Ages of the Fuping Complex: Implications for Late Archean to Paleoproterozoic Accretion and Assembly of the North China Craton. American Journal of Science, 302(3): 191–226. doi:10.2475/ajs.302.3.191

    Article  Google Scholar 

  • Zhao, G. C., Cawood, P. A., Wilde, S. A., et al., 2002c. Review of Global 2.1–1.8 Ga Orogens: Implications for a Pre-Rodinia Supercontinent. Earth-Science Reviews, 59(1–4): 125–162. doi:10.1016/s0012-8252(02)00073-9

    Article  Google Scholar 

  • Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136(2): 177–202. doi:10.1016/j.precamres.2004.10.002

    Article  Google Scholar 

  • Zhao, G. C., Sun, M., Wilde, S. A., et al., 2004. A Paleo-Mesoproterozoic Supercontinent: Assembly, Growth and Breakup. Earth-Science Reviews, 67(1/2): 91–123. doi:10.1016/j.earscirev.2004.02.003

    Article  Google Scholar 

  • Zhao, G. C., Wilde, S. A., Guo, J. H., et al., 2010. Single Zircon Grains Record Two Paleoproterozoic Collisional Events in the North China Craton. Precambrian Research, 177(3/4): 266–276. doi:10.1016/j.precamres.2009.12.007

    Article  Google Scholar 

  • Zhao, G. C., Cawood, P. A., 2012. Precambrian Geology of China. Precambrian Research, 222/223: 13–54. doi:10.1016/j.precamres.2012.09.017

    Article  Google Scholar 

  • Zhao, G. C., Zhai, M. G., 2013. Lithotectonic Elements of Precambrian Basement in the North China Craton: Review and Tectonic Implications. Gondwana Research, 23(4): 1207–1240. doi:10.1016/j.gr.2012.08.016

    Article  Google Scholar 

  • Zhao, G. C., 2014. Precambrian Evolution of the North China Craton. Elsevier, Amsterdam. 194

    Google Scholar 

  • Zhao, J. H., Hu, R. Z., Zhou, M. F., et al., 2007. Elemental and Sr-Nd-Pb Isotopic Geochemistry of Mesozoic Mafic Intrusions in Southern Fujian Province, SE China: Implications for Lithospheric Mantle Evolution. Geological Magazine, 144(6): 937–952. doi:10.1017/s0016756807003834

    Article  Google Scholar 

  • Zhao, J. H., Zhou, M. F., Zheng, J. P., 2010. Metasomatic Mantle Source and Crustal Contamination for the Formation of the Neoproterozoic Mafic Dike Swarm in the Northern Yangtze Block, South China. Lithos, 115(1–4): 177–189. doi:10.1016/j.lithos.2009.12.001

    Article  Google Scholar 

  • Zhao, J. H., Zhou, M. F., 2009. Secular Evolution of the Neoproterozoic Lithospheric Mantle underneath the Northern Margin of the Yangtze Block, South China. Lithos, 107(3/4): 152–168. doi:10.1016/j.lithos.2008.09.017

    Article  Google Scholar 

  • Zheng, Y. F., Xiao, W. J., Zhao, G. C., 2013. Introduction to Tectonics of China. Gondwana Research, 23(4): 1189–1206. doi:10.1016/j.gr.2012.10.001

    Article  Google Scholar 

  • Zindler, A., Hart, S., 1986. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14(1): 493–571. doi:10.1146/annurev.ea.14.050186.002425

    Article  Google Scholar 

  • Zou, H. B., Zindler, A., Xu, X. S., et al., 2000. Major, Trace Element, and Nd, Sr and Pb Isotope Studies of Cenozoic Basalts in SE China: Mantle Sources, Regional Variations, and Tectonic Significance. Chemical Geology, 171(1/2): 33–47. doi:10.1016/s0009-2541(00)00243-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nengsong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustafa, H.A., Wang, Q., Chen, N. et al. Geochemistry of metamafic dykes from the Quanji massif: Petrogenesis and further evidence for oceanic subduction, Late Paleoproterozoic, NW China. J. Earth Sci. 27, 529–544 (2016). https://doi.org/10.1007/s12583-015-0659-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-015-0659-z

Key Words

Navigation