Skip to main content
Log in

Exergy Analysis of Charge and Discharge Processes of Thermal Energy Storage System with Various Phase Change Materials: A Comprehensive Comparison

  • Special Column: Recent Advances in PCMs as Thermal Energy Storage in Energy Systems
  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Thermal energy storage (TES) is of great importance in solving the mismatch between energy production and consumption. In this regard, choosing type of Phase Change Materials (PCMs) that are widely used to control heat in latent thermal energy storage systems, plays a vital role as a means of TES efficiency. However, this field suffers from lack of a comprehensive investigation on the impact of various PCMs in terms of exergy. To address this issue, in this study, in addition to indicating the melting temperature and latent heat of various PCMs, the exergy destruction and exergy efficiency of each material are estimated and compared with each other. Moreover, in the present work the impact of PCMs mass and ambient temperature on the exergy efficiency is evaluated. The results proved that higher latent heat does not necessarily lead to higher exergy efficiency. Furthermore, to obtain a suitable exergy efficiency, the specific heat capacity and melting temperature of the PCMs must also be considered. According to the results, LiF-CaF2 (80.5 wt%:19.5 wt%) mixture led to better performance with satisfactory exergy efficiency (98.84%) and notably lower required mass compared to other PCMs. Additionally, the highest and lowest exergy destruction are belonged to GR25 and LiF-CaF2 (80.5:19.5) mixture, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C p :

Specific heat

C p,pcm,l :

Specific heat capacity of PCM in the liquid state

C p,pcm,s :

Specific heat capacity of PCM in the solid state

\(E_{{\rm{ch}}}^Q\) :

Exergy related to heat transfer in charge process

E ch,0 :

Standard chemical exergy

E a,ch :

Exergy accumulation of charge process

E a,dc :

Exergy accumulation of discharge process

E D :

Exergy destruction

E fE i :

Exergy changes in a closed system

E in :

Total electrical energy consumption

\(E_i^0\) :

Standard chemical exergy of component i

E x,heat :

Exergy related to the heat

E x,Ch :

Chemical exergy

E x,ph :

Physical exergy

E x,tot :

Total exergy

\(E_{x,{\rm{tot}}}^{{\rm{in}}}\) :

Inlet total exergy

\(E_{x,{\rm{tot}}}^{{\rm{out}}}\) :

Outlet total exergy

G :

Gibbs free energy

G i :

Gibbs free energy of component i

H T,P :

Enthalpy at operating temperature and pressure

\({H_{{T_0},{P_0}}}\) :

Enthalpy at ambient temperature and pressure

I :

Exergy destruction

i ph :

Latent heat

L :

Shell and tube length

m :

Mass

m pcm :

Mass of PCM

P 0 :

Atmospheric pressure

Q :

Heat transfer

S T,P :

Entropy at operating temperature and pressure

\({S_{{T_0},{P_0}}}\) :

Entropy at ambient temperature and pressure

S fS i :

Entropy change in the storage tank

T :

Temperature

T 0 :

Ambient temperature

T ch :

Charging temperature

T dc :

Discharging temperature

T i :

Initial temperature

T m :

Melting temperature

T pcm :

Temperature of the PCM

u fu i :

Internal energy change of the storage tank

W :

Work

X i :

Mole fraction of component i

Ψ :

Exergy Efficiency

Ch:

Chemical

ch:

Charge

dc:

Discharge

f:

Final

i:

Inlet

l:

Liquid

m:

Melt

ph:

Physical

s:

Solid

tot:

Total

EES:

Energy storage system

LHS:

Latent heat energy storage

PCMs:

Phase change materials

Ste:

Stefan number

SHS:

Sensible heat storage

TCES:

Thermochemical energy storage

TES:

Thermal energy storage

temp:

Temperature

References

  1. Adefarati T., Bansal R.C., Reliability, economic and environmental analysis of a microgrid system in the presence of renewable energy resources. Applied Energy, 2019, 236: 1089–1114.`

    Article  ADS  Google Scholar 

  2. Mao Q., Chen H., Yang Y., Energy storage performance of a PCM in the solar storage tank. Journal of Thermal Science, 2019, 28: 195–203.

    Article  ADS  Google Scholar 

  3. Mehdizadeh-Fard M., Pourfayaz F., A simple method for estimating the irreversibly in heat exchanger networks. Energy, 2018, 144: 633–646.

    Article  Google Scholar 

  4. Tatsidjodoung P., Le Pierrès N., Luo L., A review of potential materials for thermal energy storage in building applications. Renewable and Sustainable Energy Reviews, 2013, 18: 327–349.

    Article  Google Scholar 

  5. Sharma A., Tyagi V.V., Chen C., et al., Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews, 2009, 13: 318–345.

    Article  CAS  Google Scholar 

  6. Dong Y., Wang F., Yang L., et al., Thermal performance analysis of PCM capsules packed-bed system with biomimetic leaf hierarchical porous structure. Journal of Thermal Science, 2021, 30: 1559–1571.

    Article  ADS  CAS  Google Scholar 

  7. Mahdi J.M., Mohammed H.I., Talebizadehsardari P., et al., Simultaneous and consecutive charging and discharging of a PCM-based domestic air heater with metal foam. Applied Thermal Engineering, 2021, 197: 117408.

    Article  Google Scholar 

  8. Wen R., Zhang X., Huang Z., et al., Preparation and thermal properties of fatty acid/diatomite form-stable composite phase change material for thermal energy storage. Solar Energy Materials and Solar Cells, 2018, 178: 273–279.

    Article  CAS  Google Scholar 

  9. Nie B., Palacios A., Zou B., et al., Review on phase change materials for cold thermal energy storage applications. Renewable and Sustainable Energy Reviews, 2020, 134: 110340.

    Article  CAS  Google Scholar 

  10. Pourkiaei S.M., Pourfayaz F., Mehrpooya M., et al., Multi-objective optimization of tubular solid oxide fuel cells fed by natural gas: an energetic and exergetic simultaneous optimization. Journal of Thermal Analysis and Calorimetry, 2021, 145: 1575–1583.

    Article  CAS  Google Scholar 

  11. Ekrataleshian A., Pourfayaz F., Ahmadi M.H., Thermodynamic and thermoeconomic analyses and energetic and exergetic optimization of a turbojet engine. Journal of Thermal Analysis and Calorimetry, 2021, 145: 909–923.

    Article  CAS  Google Scholar 

  12. Peng B., Huang G., Wang P., et al., Effects of thermal conductivity and density on phase change materials-based thermal energy storage systems. Energy, 2019, 172: 580–591.

    Article  CAS  Google Scholar 

  13. Alam T., Bacellar D., Ling J., et al., Effect of thermal expansion coefficient, viscosity and melting range in simulation of PCM embedded heat exchangers with and without fins. International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 2021, Paper No: IMECE2021-70401, V08BT08A049.

  14. Parhizi M., Jain A., The impact of thermal properties on performance of phase change based energy storage systems. Applied Thermal Engineering, 2019, 162: 114154.

    Article  Google Scholar 

  15. Agyenim F., Hewitt N., Eames P., et al., A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renewable and Sustainable Energy Reviews, 2010, 14: 615–628.

    Article  CAS  Google Scholar 

  16. Sharma A., Tyagi V.V., Chen C.R., et al., Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews, 2009, 13: 318–345.

    Article  CAS  Google Scholar 

  17. Chung D., Thermal interface materials. Journal of Materials Engineering and Performance, 2001, 10: 56–59.

    Article  ADS  CAS  Google Scholar 

  18. Gorzin M., Hosseini M.J., Rahimi M., et al., Nano-enhancement of phase change material in a shell and multi-PCM-tube heat exchanger. Journal of Energy Storage, 2019, 22: 88–97.

    Article  Google Scholar 

  19. Mauder T., Charvat P., Stetina J., et al., Assessment of basic approaches to numerical modeling of phase change problems—accuracy, efficiency, and parallel decomposition. Journal of Heat Transfer, 2017, 139: 084502.

    Article  Google Scholar 

  20. MacPhee D., Dincer I., Thermodynamic analysis of freezing and melting processes in a bed of spherical PCM capsules. Journal of Solar Energy Engineering, 2009, 131: 031017.

    Article  Google Scholar 

  21. Watanabe T., Kanzawa A., Second law optimization of a latent heat storage system with PCMS having different melting points. Heat Recovery Systems and CHP, 1995, 15: 641–653.

    Article  CAS  Google Scholar 

  22. Aldoss T.K., Rahman M.M., Comparison between the single-PCM and multi-PCM thermal energy storage design. Energy Conversion and Management, 2014, 83: 79–87.

    Article  Google Scholar 

  23. Vakilaltojjar S.M., Saman W., Analysis and modelling of a phase change storage system for air conditioning applications. Applied Thermal Engineering, 2001, 21: 249–263.

    Article  CAS  Google Scholar 

  24. Stritih U., Butala V., Energy saving in building with PCM cold storage. International Journal of Energy Research, 2007, 31: 1532–1544.

    Google Scholar 

  25. Koca A., Oztop H.F., Koyun T., et al., Energy and exergy analysis of a latent heat storage system with phase change material for a solar collector. Renewable Energy, 2008, 33: 567–574.

    Article  CAS  Google Scholar 

  26. Badar M.A., Zubair S.M., Al-Farayedhi A.A., Second-law-based thermoeconomic optimization of a sensible heat thermal energy storage system. Energy, 1993, 18: 641–649.

    Article  CAS  Google Scholar 

  27. Guo J., Liu Z., Yang B., et al., Melting assessment on the angled fin design for a novel latent heat thermal energy storage tube. Renewable Energy, 2022, 183: 406–422.

    Article  Google Scholar 

  28. Guo J., Wang X., Yang B., et al., Thermal assessment on solid-liquid energy storage tube packed with non-uniform angled fins. Solar Energy Materials and Solar Cells, 2022, 236: 111526.

    Article  CAS  Google Scholar 

  29. Yang X., Wang X., Liu Z., et al., Effect of fin number on the melting phase change in a horizontal finned shell-and-tube thermal energy storage unit. Solar Energy Materials and Solar Cells, 2022, 236: 111527.

    Article  CAS  Google Scholar 

  30. Yang X., Guo J., Yang B., et al., Design of non-uniformly distributed annular fins for a shell-and-tube thermal energy storage unit. Applied Energy, 2020, 279: 115772.

    Article  Google Scholar 

  31. Beigzadeh M., Pourfayaz F., Ghazvini M., et al., Energy and exergy analyses of solid oxide fuel cell-gas turbine hybrid systems fed by different renewable biofuels: A comparative study. Journal of Cleaner Production, 2021, 280: 124383.

    Article  CAS  Google Scholar 

  32. Bejan A., Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture. International Journal of Energy Research, 2002, 26(7): 0–43. DOI: https://doi.org/10.1002/er.804.

    Article  Google Scholar 

  33. Akbari Vakilabadi M., Bidi M., Najafi A., et al., Energy, exergy analysis and performance evaluation of a vacuum evaporator for solar thermal power plant zero liquid discharge systems. Journal of Thermal Analysis and Calorimetry, 2020, 139: 1275–1290.

    Article  CAS  Google Scholar 

  34. Kalbasi R., Shahsavar A., Afrand M., Incorporating novel heat recovery units into an AHU for energy demand reduction-exergy analysis. Journal of Thermal Analysis and Calorimetry, 2020, 139: 2821–2830.

    Article  CAS  Google Scholar 

  35. Sanli B.G., Özcanli M., Serin H., Assessment of thermodynamic performance of an IC engine using microalgae biodiesel at various ambient temperatures. Fuel, 2020, 277: 118108.

    Article  Google Scholar 

  36. Palaniappan B., Ramasamy V., Thermodynamic analysis of fly ash nanofluid for automobile (heavy vehicle) radiators. Journal of Thermal Analysis and Calorimetry, 2019, 136: 223–233.

    Article  CAS  Google Scholar 

  37. Kumar A., Sharma M., Thakur P., et al., A review on exergy analysis of solar parabolic collectors. Solar Energy, 2020, 197: 411–432.

    Article  ADS  Google Scholar 

  38. Shamoushaki M., Ehyaei M., Ghanatir F., Exergy, economic and environmental analysis and multi-objective optimization of a SOFC-GT power plant. Energy, 2017, 134: 515–531.

    Article  Google Scholar 

  39. Hashemi M., Pourfayaz F., Mehrpooya M., Energy, exergy, exergoeconomic and sensitivity analyses of modified Claus process in a gas refinery sulfur recovery unit. Journal of Cleaner Production, 2019, 220: 1071–1087.

    Article  CAS  Google Scholar 

  40. Mehrpooya M., Pakzad P., Introducing a hybrid mechanical-chemical energy storage system: Process development and energy/exergy analysis. Energy Conversion and Management, 2020, 211: 112784.

    Article  CAS  Google Scholar 

  41. Gholami A., Hajinezhad A., Pourfayaz F., et al., The effect of hydrodynamic and ultrasonic cavitation on biodiesel production: An exergy analysis approach. Energy, 2018, 160: 478–489.

    Article  Google Scholar 

  42. Mehdizadeh-Fard M., Pourfayaz F., Maleki A., Exergy analysis of multiple heat exchanger networks: An approach based on the irreversibility distribution ratio. Energy Reports, 2021, 7: 174–193.

    Article  Google Scholar 

  43. Sheikholeslami M., Jafaryar M., Hedayat M., et al., Heat transfer and turbulent simulation of nanomaterial due to compound turbulator including irreversibility analysis. International Journal of Heat and Mass Transfer, 2019, 137: 1290–1300.

    Article  CAS  Google Scholar 

  44. Mehdizadeh-Fard M., Pourfayaz F., Advanced exergy analysis of heat exchanger network in a complex natural gas refinery. Journal of Cleaner Production, 2019, 206: 670–687.

    Article  Google Scholar 

  45. Navidbakhsh M., Shirazi A., Sanaye S., Four E analysis and multi-objective optimization of an ice storage system incorporating PCM as the partial cold storage for air-conditioning applications. Applied Thermal Engineering, 2013, 58: 30–41

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fathollah Pourfayaz.

Ethics declarations

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taheri, M., Pourfayaz, F., Habibi, R. et al. Exergy Analysis of Charge and Discharge Processes of Thermal Energy Storage System with Various Phase Change Materials: A Comprehensive Comparison. J. Therm. Sci. 33, 509–521 (2024). https://doi.org/10.1007/s11630-023-1859-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-023-1859-y

Keywords

Navigation