Skip to main content

Advertisement

Log in

Thermal Performance Analysis of PCM Capsules Packed-Bed System with Biomimetic Leaf Hierarchical Porous Structure

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

As an efficient natural selection nutrient transport system, biomimetic leaf hierarchical porous structure has unique advantages in material transportation and energy transfer. Biomimetic leaf hierarchical porous structure has been widely used in solar thermochemical reactions, photocatalysis, and energy storage. To improve the thermal efficiency and reduce the power consumption, the authors introduce the idea of bionic leaf hierarchical porous structure packed-bed latent heat thermal energy storage (LHTES) system. Under the same porosity, the diameter of the PCM capsules is designed to change along the flow direction to optimize the thermal performance. The effects of velocity on temperature distribution, pressure drop, liquid fraction, and thermal storage capacity of the conventional uniform model and bionic leaf hierarchical porous model are analyzed. The results show that the bionic leaf hierarchical porous structure can thin the thickness of the thermocline, reduce the pressure drop, increase the heat transfer area, and improve the thermal response of the packed-bed compared with the conventional uniform model. The maximum increases of liquid fraction and completion rate are 36.6% and 20.3% with pressure drop reduction of 25 Pa, respectively. The maximum decrease of the above-melting point (MP) thermocline is 51.7% as well. These results provide suggestions to optimize the packed-bed LHTES system and improve its thermal performance under practical conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c :

specific heat/J·kg−1 ·K−1

D :

diameter of the packed-bed/m

d :

diameter of the PCM capsule/m

g :

gravity/m·s−2

H :

height of tank/m

h :

enthalpy/J·kg−1

k :

thermal conductivity/W·m−1·K−1

L :

latent heat/kJ·kg−1

n :

number of PCM capsule

P :

pressure/Pa

S :

area/m2

T :

temperature/K

t :

time/s

u :

velocity in x-direction/m·s−1

V :

volume/m3

v :

velocity in y-direction/m·s−1

x :

x coordinate

y :

y coordinate

z :

z coordinate

ε :

porosity

η :

completion rate

μ :

dynamic viscosity/Pa·s

ρ :

density/kg·m−3

ϕ :

liquid fraction

ave:

average

bio:

bionic

con:

conventional

f:

heat transfer flow

in:

inlet

ini:

initial

p:

PCM

s:

sensible

ter:

terminal

w:

water

CR:

completion rate

HTF:

heat transfer flow

LF:

liquid fraction

LHTES:

latent heat thermal energy storage

PCM:

phase change material

TES:

thermal energy storage

References

  1. Ling H.S., Wang L., Chen C., Chen H.S., Numerical investigations of optimal phase change material incorporated into ventilated walls. Energy, 2019, 172: 1187–1197.

    Article  Google Scholar 

  2. Zhang N., Wang Z.F., Lior N., Han W., Advancement of distributed energy methods by a novel high efficiency solar-assisted combined cooling, heating and power system. Applied Energy, 2018, 219: 179–186.

    Article  Google Scholar 

  3. Liang H.X., Wang F.Q., Cheng Z.M., Shuai Y., Lin B., Pan Y.Z., Performance study on optical splitting film-based spectral splitting concentrated photovoltaic/thermal applications under concentrated solar irradiation. Solar Energy, 2020, 206: 84–91.

    Article  Google Scholar 

  4. Yuan Y., Lin X.J., Cheng Z.M., Wang F.Q., Shuai Y., Tan H.P., Experimental investigation of thermal performance enhancement of cavity receiver with bottom surface interior convex. Applied Thermal Engineering, 2020, 168: 114847.

    Article  Google Scholar 

  5. Sun J., Zhang Z., Wang L., Zhang Z.W., Wei J.J., Comprehensive review of line-focus concentrating solar thermal technologies: Parabolic Trough Collector (PTC) vs Linear Fresnel Reflector (LFR). Journal of Thermal Science, 2020, 29: 1097–1124.

    Article  ADS  Google Scholar 

  6. Wang F.Q., Cheng Z.M., Tan J.Y., Yuan Y., Shuai Y., Liu L.Y., Progress in concentrated solar power technology with parabolic trough collector system: a comprehensive review. Renewable and Sustainable Energy Reviews, 2017, 79: 1314–1328.

    Article  Google Scholar 

  7. Wang C.H., Feng Y., Yue K., Zhang X.X., Discontinuous finite element method for combined radiation-conduction heat transfer in participating media. International Communications in Heat and Mass Transfer, 2019, 108: 104287.

    Article  Google Scholar 

  8. Li Y.Y., Zhang N., Lior N., Performance comparison of two low-CO2 emission solar/methanol hybrid combined cycle power systems. Applied Energy, 2015, 155: 740–752.

    Article  Google Scholar 

  9. Pelay U., Luo L.A., Fan Y.L., Stitou D., Rood M., Thermal energy storage systems for concentrated solar power plants. Renewable Sustainable Energy Reviews, 2017, 79: 82–100.

    Article  Google Scholar 

  10. Mao Q.J., Liu N, Li P., Liu D.H., A novel shell-and-tube thermal energy storage tank: Modeling and investigations of thermal performance. Applied Thermal Engineering, 2019, 159: 113964.

    Article  Google Scholar 

  11. Wang F.Q., Cheng Z.M., Tan J.Y., Yuan Y., Shuai Y., Liu L.H., Progress in concentrated solar power technology with parabolic trough collector system: a comprehensive review. Renewable and Sustainable Energy Reviews, 2017, 79: 1314–1328.

    Article  Google Scholar 

  12. Jin H., Wang C., Fan C., Simulation study on hydrogen-heating-power poly-generation system based on solar driven supercritical water biomass gasification with compressed gas products as an energy storage system. Journal of Thermal Science, 2020, 29: 365–377.

    Article  ADS  Google Scholar 

  13. Li D., Wu Y.Y., Zhang G.J., Arıcı M., Liu C.Y., Wang F.Q., Influence of glazed roof containing phase change material on indoor thermal environment and energy consumption. Applied Energy, 2018, 222: 343–350.

    Article  Google Scholar 

  14. Plytaria M.T., Bellos E., Tzivanidis C., Antonopoulos K.A., Financial and energetic evaluation of solar-assisted heat pump underfloor heating systems with phase change materials. Applied Thermal Engineering, 2018, 149: 548–564.

    Article  Google Scholar 

  15. Wang Q.S., Wei W., Li D., Qi H.B., Wang F.Q., Arici M., Experimental investigation of thermal radiative properties of Al2O3-paraffin nanofluid. Solar Energy, 2018, 177: 420–426.

    Article  ADS  Google Scholar 

  16. Ling H.S., Wang L., Chen C., Wang Y.F., Chen H.S., Effect of thermophysical properties correlation of phase change material on numerical modelling of agricultural building. Applied Thermal Engineering, 2019, 157: 113579.

    Article  Google Scholar 

  17. Li D., Wu Y.Y., Liu C.Y., Zhang G.J., Arici M., Numerical investigation of thermal and optical performance of window units filled with nanoparticle enhanced PCM. International Journal of Heat and Mass Transfer, 2018, 125: 1321–1332.

    Article  Google Scholar 

  18. Li W., Dong Y., Zhang X., Liu X., Preparation and performance analysis of graphite additive/paraffin composite phase change materials. Processes, 2019, 7(7): 447.

    Article  Google Scholar 

  19. Arıcı M., Tütüncü E., Yıldız Ç., Li D., Enhancement of PCM melting rate via internal fin and nanoparticles. International Journal of Heat and Mass Transfer, 2020, 156: 119845.

    Article  Google Scholar 

  20. Xu H.J., Xing Z.B., Wang F.Q., Cheng Z.M., Review on heat conduction, heat convection, thermal radiation and phase change heat transfer of nanofluids in porous media: Fundamentals and applications. Chemical Engineering Science, 2019, 195: 462–483.

    Article  Google Scholar 

  21. Milián Y.E., Gutiérrez A., Grágeda M., Ushak S., A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties. Renewable and Sustainable Energy Reviews, 2017, 73: 983–999.

    Article  Google Scholar 

  22. Wang Z.Y., Situ W.F., Li X.X., Zhang G.Q., Huang Z, Yuan W.Z., Yang C.Z., Yang C.X., Novel shape stabilized phase change material based on epoxy matrix with ultrahigh cycle life for thermal energy storage. Applied Thermal Engineering, 2017, 123: 1006–1012.

    Article  Google Scholar 

  23. Sheikholeslami M., Haq R.U., Shafee A., Li Z.X., Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins. International Journal of Heat and Mass Transfer, 2019, 130: 1322–1342.

    Article  Google Scholar 

  24. He Z.Y., Wang X.H., Du X.Z., Xu C., Yang L.J., Cyclic characteristics of water thermocline storage tank with encapsulated PCM packed bed. International Journal of Heat and Mass Transfer, 2019, 139: 1077–1086.

    Article  Google Scholar 

  25. Wang Y.F., Wang L., Xie N.N., Lin X.P., Chen H.S., Experimental study on the melting and solidification behavior of erythritol in a vertical shell-and-tube latent heat thermal storage unit. International Journal of Heat and Mass Transfer, 2016, 99: 770–781.

    Article  Google Scholar 

  26. Mao Q.J., Chen H.C., Yang Y.Z., Energy storage performance of a PCM in the solar storage tank. Journal of Thermal Science, 2019, 28(02): 39–47.

    Article  Google Scholar 

  27. Incropera F.P., Fundamentals of Heat and Mass Transfer, John Wiley & Sons, Inc., 2006.

  28. De Gracia A., Cabeza L.F., Numerical simulation of a PCM packed bed system: A review. Renewable and Sustainable Energy Reviews, 2016, 69: 1055–1063.

    Article  Google Scholar 

  29. Arkar C., Medved S., Free cooling of a building using PCM heat storage integrated into the ventilation system. Solar Energy, 2007, 81(9): 1078–1087.

    Article  ADS  Google Scholar 

  30. Wu M., Xu C., He Y. L., Dynamic thermal performance analysis of a molten-salt packed-bed thermal energy storage system using PCM capsules. Applied Energy, 2014, 121: 184–195.

    Article  Google Scholar 

  31. Nallusamy N., Sampath S., Velraj R., Experimental investigation on a combined sensible and latent heat storage system integrated with constant/varying (solar) heat sources. Renewable Energy, 2007, 32: 1206–1227.

    Article  Google Scholar 

  32. Yuan F., Li M.J., Ma Z., Jin B., Liu Z.B., Experimental study on thermal performance of high-temperature molten salt cascaded latent heat thermal energy storage system. International Journal of Heat and Mass Transfer, 2018, 118: 997–1011.

    Article  Google Scholar 

  33. Liao Z.R., Zhao G.K., Xu C., Yang C.Y., Jin Y., Ju X., Du X.Z., Efficiency analyses of high temperature thermal energy storage systems of rocks only and rock-PCM capsule combination. Solar Energy, 2018, 162: 153–164.

    Article  ADS  Google Scholar 

  34. Li T.X., Xu J.X., Wu D.L., He F., Wang R.Z., High energy-density and power-density thermal storage prototype with hydrated salt for hot water and space heating. Applied Energy, 2019, 248: 406–414.

    Article  Google Scholar 

  35. Xia L., Zhang P., Wang R.Z., Numerical heat transfer analysis of the packed bed latent heat storage system based on an effective packed bed model. Energy, 2010, 35(5): 2022–2032.

    Article  Google Scholar 

  36. Cheng X.W., Zhai X.Q., Thermal performance analysis and optimization of a cascaded packed bed cool thermal energy storage unit using multiple phase change materials. Applied Energy, 2018, 215: 566–576.

    Article  Google Scholar 

  37. Wu M., Xu C., He Y.L., Cyclic behaviors of the molten-salt packed-bed thermal storage system filled with cascaded phase change material capsules. Applied Thermal Engineering, 2016, 93: 1061–1073.

    Article  Google Scholar 

  38. Elfeky K.E., Mohammed A.G., Ahmed N., Lu L., Wang Q.W., Thermal and economic evaluation of phase change material volume fraction for thermocline tank used in concentrating solar power plants. Applied Energy, 2020, 267: 115054.

    Article  Google Scholar 

  39. Raul A., Jain M., Gaikwad S., Saha S.K., Modelling and experimental study of latent heat thermal energy storage with encapsulated PCMs for solar thermal applications. Applied Thermal Engineering, 2018, 143: 415–428.

    Article  Google Scholar 

  40. Majumdar R., Saha S.K., Effect of varying extent of PCM capsule filling on thermal stratification performance of a storage tank. Energy, 2019, 178: 1–20.

    Article  Google Scholar 

  41. Saha S.K., Das R.B., Exergetic and performance analyses of two-layered packed bed latent heat thermal energy storage system. International Journal of Energy Research, 2019, 44(3): 1–18.

    Google Scholar 

  42. Li M.J., Qiu Y., Li M.J., Cyclic thermal performance analysis of a traditional single-layered and of a novel multi-layered packed-bed molten salt thermocline tank. Renewable Energy, 2018, 118: 565–578.

    Article  Google Scholar 

  43. Li M.J., Jin B., Yan J.J., Ma Z., Li M.J., Numerical and experimental study on the performance of a new two-layered high-temperature packed-bed thermal energy storage system with changed-diameter macro-encapsulation capsule. Applied Thermal Engineering, 2018, 142: 830–845.

    Article  Google Scholar 

  44. Sun M.H., Huang S.Z., Chen L.H., Li Y., Yang X.Y., Yuan Z.Y., Su B.L., Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chemical Society Reviews, 2016, 45(12): 3479–3563.

    Article  Google Scholar 

  45. Zheng X.F., Shen G.F., Wang C.W., Li Y., Dunphy D., Hasan T., Brinker C.J., Su B.L., Bio-inspired Murray materials for mass transfer and activity. Nature Communications, 2017, 8: 1–9.

    Article  Google Scholar 

  46. Xie J.L., Choo K.F., Xiang J.H., Lee H.M., Characterization of natural convection in a PCM-based heat sink with novel conductive structures. International Communications of Heat and Mass Transfer, 2019, 108: 104306.

    Article  Google Scholar 

  47. Xu W.Z., Xing Y., Liu J., Wu H.P., Cui Y., Li D.W., Guo D.Y., Li C.R., Liu A.P., Bai H., Efficient water transport and solar steam generation via radially, hierarchically structured aerogels. ACS Nano, 2019, 13(7): 7930–7938.

    Article  Google Scholar 

  48. Shi X.H., Shuai Y., Wang F.Q., Zhang C.X., Cheng Z.M., Chen X., Effects of ordered hierarchically porous structure on methane reforming performance in solar foam reactor. Journal of CO2 Utilization, 2020, 37: 147–157.

    Article  Google Scholar 

  49. Wang F.Q., Shi X.H., Zhang C.X., Cheng Z.M., Chen X., Effects of non-uniform porosity on thermochemical performance of solar driven methane reforming. Energy, 2020, 191: 116575.

    Article  Google Scholar 

  50. Chen X., Wang F.Q., Yan W.W., Han Y.F., Cheng Z.M., Zhu J., Thermochemical performance of solar driven CO2 reforming of methane in volumetric reactor with gradual foam structure. Energy, 2018, 151: 545–555.

    Article  Google Scholar 

  51. Assis E., Katsman L., Ziskind G., Letan R., Numerical and experimental study of melting in a spherical shell. International Journal of Heat and Mass Transfer, 2007, 50(9–10): 1790–1804.

    Article  MATH  Google Scholar 

  52. Bellan S., Alam T.E., González-Aguilara J., Romeroa M., Rahman M.M., Goswami D.Y., Stefanakos E.K., Numerical and experimental studies on heat transfer characteristics of thermal energy storage system packed with molten salt PCM capsules, Applied Thermal Engineering, 2015, 90: 970–979.

    Article  Google Scholar 

  53. Galione P., Lehmkuhl Barba O., Rigola Serrano J., Oliva Llena A., Rodríguez Pérez I.M., Numerical simulations of thermal energy storage systems with phase change materials. ISES Solar World Congress, 2011: 1–12. URI: http://hdl.handle.net/2117/13493.

Download references

Acknowledgments

This work was supported by the National Key R&D Program of China (No. 2018YFA0702300), and the National Natural Science Foundation of China (Grant No. 52076064), and the Taishan Scholars of Shandong Province (tsqn201812105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuqiang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Wang, F., Yang, L. et al. Thermal Performance Analysis of PCM Capsules Packed-Bed System with Biomimetic Leaf Hierarchical Porous Structure. J. Therm. Sci. 30, 1559–1571 (2021). https://doi.org/10.1007/s11630-021-1462-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-021-1462-z

Keywords

Navigation