Skip to main content
Log in

Thermal analysis of resin composites with ellipsoidal filler considering thermal boundary resistance

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

The effective thermal conductivity of composites with ellipsoidal fillers is analyzed by using a homogenization method that is able to represent the microstructure precisely. In this study, various parameters such as the volume fraction, shape, and distribution of the filler are quantitatively estimated to understand the mechanisms of heat transfer in the composite. First, thermal boundary resistance between resin and filler is important for obtaining composites with higher thermal conductivity. Second, the anisotropy of the effective thermal conductivity arises from contact between filler in the case of ellipsoidal filler and produces lower thermal resistance. Finally, the filler network and thermal resistance are essential for the heat transfer in composites because the path of thermal conduction is improved by contact between neighboring filler particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Zhou, Q. Chen, X. Sui, L. Dong, Z. Wang, Enhanced thermal conductivity and dielectric properties of Al/β-SiCw/PVDF composites, Composites Part A: Applied Science and Manufacturing, 71 (2015) 184–191.

    Article  Google Scholar 

  2. B.L. Zhu, J. Wang, H. Zheng, J. Ma, J. Wu, R. Wu, Investigation of thermal conductivity and dielectric properties of LDPE-matrix composites filled with hybrid filler of hollow glass microspheres and nitride particles, Composites Part B: Engineering, 69 (2015) 496–506.

    Article  Google Scholar 

  3. Z. Gao, L, Zhao,. Effect of nano-fillers on the thermal conductivity of epoxy composites with micro-Al2O3 particles, Materials & Design, 66(A) (2015) 176–182.

    Article  Google Scholar 

  4. Y. Yao, X. Zeng, K. Guo, R. Sun, Jb. Xu, The effect of interfacial state on the thermal conductivity of functionalized Al2O3 filled glass fibers reinforced polymer composites, Composites Part A: Applied Science and Manu facturing, 69 (2015) 49–55.

    Article  Google Scholar 

  5. J. Schuster, D. Heider, K. Sharp, M. Glowania, Thermal conductivities of three-dimensionally woven fabric composites, Composites Science and Technology, 68 (2008) 2085–2091.

    Article  Google Scholar 

  6. EB. Wei, YM. Poon. Effective thermal conductivity of graded nonlinear composites with heat contact resistance. Physics Letters A, 359 (2006) 685–692.

    Article  ADS  MATH  Google Scholar 

  7. R. Kothari, CT. Sun, R. Dinwiddie, H. Wang, Experimental and numerical study of the effective thermal conductivity of nano composites with thermal boundary resistance, International Journal of Heat and Mass Transfer, 66 (2013) 823–829.

    Article  Google Scholar 

  8. BR. Wang, JT. Liu, ST. Gu, QC. He, Numerical evaluation of the effective conductivities of composites with interfacial weak and strong discontinuities, International Journal of Thermal Sciences, 93 (2015) 1–20.

    Article  Google Scholar 

  9. EB. Wei, JB. Song, JW. Tian, Thermal conductivity of graded spherical composites with contact resistance, Physics Letters A, 319 (2003) 401–405.

    Article  ADS  Google Scholar 

  10. JJ. Gou, H. Zhang, YJ. Dai, S. Li, WQ. Tao, Numerical prediction of effective thermal conductivities of 3D four-directional braided composites, Composite Structures, 125 (2015) 499–508.

    Article  Google Scholar 

  11. W. Leclerc, N. Ferguen, C. Pélegris, E. Bellenger, M. Guessasma, H Haddad, An efficient numerical model for investigating the effects of anisotropy on the effective thermal conductivity of alumina/Al composites, Advances in Engineering Software, 77 (2014) 1–12.

    Article  Google Scholar 

  12. Y. Asakuma, T. Yamamoto, Thermal analysis of porous medium with ellipsoidal pores using a homogenization method, Heat and Mass Transfer, accepted HAMT-D-15-00053.

  13. Y. Asakuma, Y. Kanazawa, T. Yamamoto, Thermal radiation analysis of packed bed by a homogenization method, International Journal of Heat and Mass Transfer, 73 (2014) 93–102.

    Article  Google Scholar 

  14. A. Matine, N. Boyard, G. Legrain, Y. Jarny, P. Cartraud, Transient heat conduction within periodic heterogeneous media: A space-time homogenization approach. International Journal of Thermal Sciences, 92 (2015) 217–229.

    Article  Google Scholar 

  15. I. Sevostianov, G. Mishuris, Effective thermal conductivity of a composite with thermo-sensitive constituents and related problems, International Journal of Engineering Science 80 (2014) 124–135.

    Article  MathSciNet  Google Scholar 

  16. J. Gudmundsson, M. Hammar, M. Kreveld, Higher order Delaunay triangulations. Computational Geometry, Theory and Applications, 23 (2002) 85–98.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asakuma, Y., Yamamoto, T. Thermal analysis of resin composites with ellipsoidal filler considering thermal boundary resistance. J. Therm. Sci. 25, 424–430 (2016). https://doi.org/10.1007/s11630-016-0880-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-016-0880-9

Keywords

Navigation