Advertisement

Journal of Mountain Science

, Volume 13, Issue 11, pp 1923–1940 | Cite as

Application of Chebyshev theorem to data preparation in landslide susceptibility mapping studies: an example from Yenice (Karabük, Turkey) region

  • Murat ErcanogluEmail author
  • Gülseren Dağdelenler
  • Erman Özsayin
  • Tolga Alkevlı
  • Harun Sönmez
  • N. Nur Özyurt
  • Burcu Kahraman
  • İbrahim Uçar
  • Sinem Çetınkaya
Article

Abstract

Landslide database construction is one of the most crucial stages of the landslide susceptibility mapping studies. Although there are many techniques for preparing landslide database in the literature, representative data selection from huge data sets is a challenging, and, to some extent, a subjective task. Thus, in order to produce reliable landslide susceptibility maps, data-driven, objective and representative database construction is a very important stage for these maps. This study mainly focuses on a landslide database construction task. In this study, it was aimed at building a representative landslide database extraction approach by using Chebyshev theorem to evaluate landslide susceptibility in a landslide prone area in the Western Black Sea region of Turkey. The study area was divided into two different parts such as training (Basin 1) and testing areas (Basin 2). A total of nine parameters such as topographical elevation, slope, aspect, planar and profile curvatures, stream power index, distance to drainage, normalized difference vegetation index and topographical wetness index were used in the study. Next, frequency distributions of the considered parameters in both landslide and nonlandslide areas were extracted using different sampling strategies, and a total of nine different landslide databases were obtained. Of these, eight databases were gathered by the methodology proposed by this study based on different standard deviations and algebraic multiplication of raster parameter maps. To evaluate landslide susceptibility, Artificial Neural Network method was used in the study area considering the different landslide and nonlandslide data. Finally, to assess the performances of the so-produced landslide susceptibility maps based on nine data sets, Area Under Curve (AUC) approach was implemented both in Basin 1 and Basin 2. The best performances (the greatest AUC values) were gathered by the landslide susceptibility map produced by two standard deviation database extracted by the Chebyshev theorem, as 0.873 and 0.761, respectively. Results revealed that the methodology proposed by this study is a powerful and objective approach in landslide susceptibility mapping.

Keywords

Artificial neural network Chebyshev theorem Landslide Landslide database Landslides susceptibility mapping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akgun A (2012) A comparison of landslide susceptibility maps produced by logistic regression multi-criteria decision and likelihood ratio methods: a case study at Izmir Turkey. Landslides 9(1): 93–106. DOI: 10.1007/s10346-011-0283-7CrossRefGoogle Scholar
  2. Alkevli T, Ercanoglu M (2011) Assessment of ASTER satellite images in landslide inventory mapping: Yenice-Gokcebey (Western Black Sea Region Turkey).Bulletin of Engineering Geology and the Environment 70(4): 607–617. DOI: 10.1007/s10064-011-0353-zGoogle Scholar
  3. Althuwaynee OF, Pradhan B, Park HJ, et al. (2014) A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping. Catena 114: 21–36. DOI: 10.1016/j.catena.2013.10.011CrossRefGoogle Scholar
  4. Bai SB, Wang J, Lu GN, et al. (2010) GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area China. Geomorphology 115(1): 23–31. DOI: 10.1016/j.geomorph.2009.09.025CrossRefGoogle Scholar
  5. Bi R, Schleier M, Rohn J, et al. (2014) Landslide susceptibility analysis based on ArcGIS and Artificial Neural Network for a large catchment in Three Gorges region China. Environmental Earth Sciences 72(6): 1925–1938. DOI: 10.1007/s12665-014-3100-5CrossRefGoogle Scholar
  6. Bluman AG (2004) Elementary Statistics: A Step by Step Approach. McGraw Hill, New York. p 897.Google Scholar
  7. Bui DT, Pradhan B, Lofman O, et al. (2012) Landslide susceptibility assessment in the Hoa Binh province of Vietnam: A comparison of the Levenberg–Marquardt and Bayesian regularized neural networks. Geomorphology 171-172: 12–29. DOI: 10.1016/j.geomorph.2012.04.023CrossRefGoogle Scholar
  8. Chau KT, Chan JE (2005) Regional bias of landslide data in generating susceptibility maps using logistic regression: Case of Hong Kong Island. Landslides 2(4): 280–290. DOI: 10.1007/s10346-005-0024-xCrossRefGoogle Scholar
  9. Choi J, Oh HJ, Won JS, Lee S (2010) Validation of an artificial neural network model for landslide susceptibility mapping. Environmental Earth Sciences 60(3): 473–483. DOI: 10.1007/s12665-009-0188-0CrossRefGoogle Scholar
  10. Clerici A, Perego S, Tellini C, et al. (2006) A GIS-based automated procedure for landslide susceptibility mapping by the conditional analysis method: the Baganza valley case study (Italian Northern Apennines). Environmental Geology 50(7): 941–961. DOI: 10.1007/s00254-006-0264-7CrossRefGoogle Scholar
  11. Conforti M, Pascale S, Robustelli G, et al. (2014) Evaluation of prediction capability of the artificial neural networks for mapping landslide susceptibility in the Turbolo River catchment (northern Calabria Italy). Catena 113: 236–250. DOI: 10.1016/j.catena.2013.08.006CrossRefGoogle Scholar
  12. Corominas J, Van Westen C, Frattini P, et al. (2014) Recommendations for the quantitative analysis of landslide risk. Bulletin of Engineering Geology and the Environment 73(2): 209–263. DOI: 10.1007/s10064-013-0538-8Google Scholar
  13. Cruden DM, Varnes DJ (1996) Landslide Types and Processes. In: Turner AK, Schuster RL (Eds.), Landslides: Investigation and Mitigation, Transportation Research Board, Special Report No. 247, pp: 36–75.Google Scholar
  14. Dagdelenler G, Nefeslioglu HA, Gokceoglu C (2015) Modification of seed cell sampling strategy for landslide susceptibility mapping: an application from the Eastern part of the Gallipoli Peninsula (Canakkale, Turkey). Bulletin of Engineering Geology and the Environment 1–16. DOI: 10.1007/s10064-015-0759-0Google Scholar
  15. Dai FC, Lee CF (2003) A spatiotemporal probabilistic modelling of storm induced shallow landsliding using aerial photographs and logistic regression. Earth Surface Processes & Landforms 28(5): 527–545. DOI: 10.1002/esp.456CrossRefGoogle Scholar
  16. Dewitte O, Chung CJ, Cornet Y, et al. (2010) Combining spatial data in landslide reactivation susceptibility mapping: A likelihood ratio-based approach in W Belgium. Geomorphology 122(1): 153–166. DOI: 10.1016/j.geomorph. 2010.06.010CrossRefGoogle Scholar
  17. Dowla FU, Rogers LL (1995) Solving Problems in Environmental Engineering and Geosciences with Artificial Neural Networks. MIT Press, Massachusetts, London. p 241.Google Scholar
  18. Duman TY, Can T, Gokceoglu C, et al. (2006) Application of logistic regression for landslide susceptibility zoning of Cekmece Area Istanbul Turkey. Environmental Geology 51(2): 241–256. DOI: 10.1007/s00254-006-0322-1CrossRefGoogle Scholar
  19. Eastman JR (2012) IDRISI Selva Guide to GIS and Image Processing User’s Guide (Ver17). Clark University Press, Massachusetts, USA.Google Scholar
  20. Ercanoglu M (2005) Landslide susceptibility assessment of SE Bartin (West Black Sea region Turkey) by artificial neural networks. Natural Hazards and Earth System Sciences 5(6): 979–992. DOI: 10.5194/nhess-5-979-2005CrossRefGoogle Scholar
  21. Ercanoglu M, Gokceoglu C (2004) Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region Turkey). Engineering Geology 75(3): 229–250. DOI: 10.1016/j.enggeo.2004.06.001CrossRefGoogle Scholar
  22. Ercanoglu M, Kasmer Ö, Temiz N (2008) Adaptation and comparison of expert opinion to analytical hierarchy process for landslide susceptibility mapping. Bulletin of Engineering Geology and the Environment 67(4): 565–578. DOI: 10.1007/s10064-008-0170-1CrossRefGoogle Scholar
  23. Erener A, Düzgün HSB (2012) Landslide susceptibility assessment: what are the effects of mapping unit and mapping method? Environmental Earth Sciences 66(3): 859–877. DOI: 10.1007/s12665-011-1297-0Google Scholar
  24. Ermini L, Catani F, Casagli N (2005) Artificial Neural Networks applied to landslide susceptibility assessment. Geomorphology 66(1-4): 327–343. DOI: 10.1016/j.geomorph. 2004.09.025CrossRefGoogle Scholar
  25. Fell R, Corominas J, Bonnard C, et al. (2008a) Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Engineering Geology 102(3-4): 85–98. DOI: 10.1016/j.enggeo.2008.03.022CrossRefGoogle Scholar
  26. Fell R, Corominas J, Bonnard C, et al. (2008b) Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Engineering Geology 102(3-4): 99–111. DOI: 10.1016/j.enggeo.2008.03.014CrossRefGoogle Scholar
  27. Fernandez T, Irigaray C, El Hamdouni R, et al. (2003) Methodology for landslide susceptibility mapping by means of a GIS Application to the Contraviesa Area (Granada Spain). Natural Hazards 30(3): 297–308.CrossRefGoogle Scholar
  28. Frattini P, Crosta G, Carrara A (2010) Techniques for evaluating the performance of landslide susceptibility models. Engineering Geology 111(1-4): 62–72. DOI: 10.1016/j.enggeo. 2009.12.004CrossRefGoogle Scholar
  29. Gómez H, Kavzoglu T (2005) Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin Venezuela. Engineering Geology 78(1-2): 11–27. DOI: 10.1016/j.enggeo.2004.10.004CrossRefGoogle Scholar
  30. Gorum T, Gönençgil B, Gökçeoglu C, et al. (2008) Implementation of reconstructed geomorphologic units in landslide susceptibility mapping: the Melen Gorge (NW Turkey). Natural Hazards 46(3): 323–351. DOI: 10.1007/s11069-007-9190-6CrossRefGoogle Scholar
  31. Guzzetti F, Carrara A, Cardinali M, et al. (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi–scale study Central Italy. Geomorphology 31(1-4): 181–216. DOI: 10.1016/S0169-555X(99)00078-1CrossRefGoogle Scholar
  32. Guzzetti F, Reichenbach P, Ardizzone F, et al. (2006) Estimating the quality of landslide susceptibility models. Geomorphology 81(1-2): 166–184. DOI:10.1016/j.geomorph.2006.04.007CrossRefGoogle Scholar
  33. Guzzetti F, Mondini AC, Cardinali M, et al. (2012) Landslide inventory maps: New tools for an old problem. Earth-Science Reviews 112(1-2): 42–66. DOI:10.1016/j.earscirev.2012.02.001CrossRefGoogle Scholar
  34. Hasekiogullari GD, Ercanoglu M (2012) A new approach to use AHP in landslide susceptibility mapping: a case study at Yenice (Karabuk NW Turkey). Natural Hazards 63(2): 1157–1179. DOI: 10.1007/s11069-012-0218-1CrossRefGoogle Scholar
  35. Huang Y, Wanstedt S (1998) The introduction of neural network system and its applications in rock engineering. Engineering Geology 49(3-4): 253–260. DOI: 10.1016/S0013-7952(97)00056-2CrossRefGoogle Scholar
  36. Hussin HY, Zumpano V, Reichenbach P, et al. (2016) Different landslide sampling strategies in a grid-based bi-variate statistical susceptibility model. Geomorphology 253: 508–523. DOI: 10.1016/j.geomorph.2015.10.030CrossRefGoogle Scholar
  37. Kawabata D, Bandibas J (2009) Landslide susceptibility mapping using geological data a DEM from ASTER images and an Artificial Neural Network (ANN).Geomorphology 113(1-2): 97–109. DOI:10.1016/j.geomorph.2009.06.006Google Scholar
  38. Kundu S, Saha AK, Sharma DC, et al. (2013) Remote Sensing and GIS Based Landslide Susceptibility Assessment using Binary Logistic Regression Model: A Case Study in the Ganeshganga Watershed Himalayas. Journalof the Indian Societyof Remote Sensing 41(3): 697–709. DOI: 10.1007/s12524-012-0255-yCrossRefGoogle Scholar
  39. Li Y, Chen G, Tang C, et al. (2012) Rainfall and earthquakeinduced landslide susceptibility assessment using GIS and Artificial Neural Network. Natural Hazards and Earth System Sciences 12(8): 2719–2729. DOI: 10.5194/nhess-12-2719-2012CrossRefGoogle Scholar
  40. Marjanovic M, Kovacevic M, Bajat B, et al. (2011) Landslide susceptibility assessments using SVM machine learning algorithm. Engineering Geology 123(3): 225–234. DOI: 10.1016/j.enggeo.2011.09.006CrossRefGoogle Scholar
  41. Mohammady M, Pourghasemi HR, Pradhan B (2012) Landslide susceptibility mapping at Golestan Province Iran: A comparison between frequency ratio Dempster–Shafer and weights-of-evidence models. Journal of Asian Earth Sciences 61: 221–236. DOI: 10.1016/j.jseaes.2012.10.005CrossRefGoogle Scholar
  42. Nandi A, Shakoor A (2009) A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Engineering Geology 110(1-2): 11–20. DOI: 10.1016/j.enggeo. 2009.10.001CrossRefGoogle Scholar
  43. Nefeslioglu HA, Gokceoglu C, Sonmez H (2008) An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps. Engineering Geology 97(3-4): 171–191. DOI: 10.1016/j.enggeo.2008.01.004CrossRefGoogle Scholar
  44. Negnevitsky M (2002) Artificial intelligence: a guide to intelligent systems. Pearson, Essex.Google Scholar
  45. Oh HJ, Pradhan B (2011) Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area. Computers & Geosciences 37(9): 1264–1276. DOI: 10.1016/j.cageo.2010.10.012CrossRefGoogle Scholar
  46. Ozdemir A, Altural T (2013) A comparative study of frequency ratio weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains SW Turkey. Journal of Asian Earth Sciences 64: 180–197. DOI: 10.1016/j.jseaes.2012.12.014CrossRefGoogle Scholar
  47. Park S, Choi C, Kim B, et al. (2013) Landslide susceptibility mapping using frequency ratio analytic hierarchy process logistic regression and artificial neural network methods at the Inje area Korea. Environmental Earth Sciences 68(5): 1443–1464. DOI: 10.1007/s12665-012-1842-5CrossRefGoogle Scholar
  48. Park I, Lee S (2014) Spatial prediction of landslide susceptibility using a decision tree approach: a case study of the Pyeongchang area Korea. International Journal of Remote Sensing 35(16): 6089–6112. DOI: 10.1080/01431161.2014.943326CrossRefGoogle Scholar
  49. Peng L, Niu R, Huang B, et al. (2014) Landslide susceptibility mapping based on rough set theory and support vector machines: A case of the Three Gorges area China. Geomorphology 204: 287–301. DOI: 10.1016/j.geomorph.2013.08.013CrossRefGoogle Scholar
  50. Pradhan B (2013) A comparative study on the predictive ability of the decision tree support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers & Geosciences 51: 350–365. DOI: 10.1016/j.cageo. 2012.08.023CrossRefGoogle Scholar
  51. Pradhan B, Lee S (2007) Utilization of optical remote sensing data and GIS tools for regional landslide hazard analysis using an artificial neural network model. Earth Science Frontiers 14(6): 143–152. DOI: 10.1016/S1872-5791(08)60008-1CrossRefGoogle Scholar
  52. Pradhan B, Lee S, Buchroithner MF (2010) A GIS-based backpropagation neural network model and its cross-application and validation for landslide susceptibility analyses. Computers, Environment and Urban Systems 34(3): 216–235. DOI: 10.1016/j.compenvurbsys.2009.12.004CrossRefGoogle Scholar
  53. Remondo J, Gonzalez-Diez A, Teran JRD, et al. (2003) Landslide susceptibility models utilizing spatial data analysis techniques A case study from the lower Deba Valley Guipúzcoa (Spain). Natural Hazards 30(3): 267–279.CrossRefGoogle Scholar
  54. Saito H, Nakayama D, Matsuyama H (2009) Comparison of landslide susceptibility based on a decision-tree model and actual landslide occurrence: The Akaishi Mountains Japan. Geomorphology 109(3-4): 108–121. DOI:10.1016/j.geomorph.2009.02.026CrossRefGoogle Scholar
  55. San BT (2014) An evaluation of SVM using polygon-based random sampling in landslide susceptibility mapping: The Candir catchment area (western Antalya Turkey). International Journal of Applied Earth Observation and Geoinformation 26: 399–412. DOI:10.1016/j.jag.2013.09.010CrossRefGoogle Scholar
  56. Santacana N, Baeza B, Corominas J, et al. (2003) A GIS-based multivariate statistical analysis for shallow landslide susceptibility mapping in la Pobla de Lillet area (Eastern Pyrenees Spain). Natural Hazards 30(3): 281–295.CrossRefGoogle Scholar
  57. Shahabi H, Khazri S, Ahmad BB, et al. (2014) Landslide susceptibility mapping at Central Zab basin Iran: A comparison between analytical hierarchy process, frequency ratio and logistic regression models. Catena 115: 55–70. DOI:10.1016/j.catena.2013.11.014CrossRefGoogle Scholar
  58. Sujatha ER, Kumaravel P, Rajamanickam VG (2012) Landslide susceptibility mapping using remotely sensed data through conditional probability analysis using seed cell and point sampling techniques. Journal of the Indian Society Remote Sensing 40(4): 669–678. DOI: 10.1007/s12524-011-0192-1CrossRefGoogle Scholar
  59. Suzen ML, Doyuran V (2004) Data driven bivariate landslide susceptibility assessment using geographical information systems: a method and application to Asarsuyu catchment Turkey. Engineering Geology 71(3-4): 303–321. DOI: 10.1016/S0013-7952(03)00143-1CrossRefGoogle Scholar
  60. van Westen CJ, Castellanos E, Kuriakose SL (2008) Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Engineering Geology 102(3-4): 112–132. DOI: 10.1016/j.enggeo.2008.03.010CrossRefGoogle Scholar
  61. Walpole RE, Myers RH, Myers SL, et al. (2002) Probability & Statistics for Engineers and Scientists. Prentice Hall, New Jersey, USA. p. 816.Google Scholar
  62. Wang LJ, Sawada K, Moriguchi S (2013) Landslide susceptibility analysis with logistic regression model based on FCM sampling strategy. Computers & Geosciences 57: 81–92. DOI: 10.1016/j.cageo.2013.04.006CrossRefGoogle Scholar
  63. WP/WLI (The International Geotechnical Societies’ UNESCO Working Party on World Landslide Inventory) (1990) A suggested method for reporting a landslide. Bulletin of the International Association of Engineering Geology 41: 5–12.CrossRefGoogle Scholar
  64. WP/WLI (The International Geotechnical Societies’ UNESCO Working Party on World Landslide Inventory) (1993) Multilingual landslide glossary. BiTech Publishers Ltd, British Columbia.Google Scholar
  65. Yeon YK, Han JG, Ryu KH (2010) Landslide susceptibility mapping in Injae Korea using a decision tree. Engineering Geology 116(3-4): 274–283. DOI: 10.1016/j.enggeo.2010.09. 009CrossRefGoogle Scholar
  66. Yesilnacar E, Topal T (2005) Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study Hendek region (Turkey). Engineering Geology 79(3-4): 251–266. DOI:10.1016/j.enggeo. 2005.02.002CrossRefGoogle Scholar
  67. Yilmaz I (2009) Landslide susceptibility mapping using frequency ratio logistic regression artificial neural networks and their comparison: A case study from Kat landslides (Tokat-Turkey). Computers & Geosciences 35(6): 1125–1138. DOI: 10.1016/j.cageo.2008.08.007CrossRefGoogle Scholar
  68. Yilmaz I (2010) The effect of the sampling strategies on the landslide susceptibility mapping by conditional probability and artificial neural networks. Environmental Earth Sciences 60(3): 505–519. DOI: 10.1007/s12665-009-0191-5CrossRefGoogle Scholar
  69. Zare M, Pourghasemi HR, Vafakhah M, et al. (2012) Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: a comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms. Arabian Journal of Geosciences 6(8): 2873–2888. DOI: 10.1007/s12517-012-0610-xCrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Murat Ercanoglu
    • 1
    Email author
  • Gülseren Dağdelenler
    • 1
  • Erman Özsayin
    • 1
  • Tolga Alkevlı
    • 1
  • Harun Sönmez
    • 1
  • N. Nur Özyurt
    • 1
  • Burcu Kahraman
    • 1
  • İbrahim Uçar
    • 2
  • Sinem Çetınkaya
    • 1
  1. 1.Geological Engineering DepartmentHacettepe UniversityBeytepe, AnkaraTurkey
  2. 2.Civil Engineering DepartmentGazi UniversityTeknikokullar, AnkaraTurkey

Personalised recommendations