Skip to main content
Log in

Meta-topolin enhances regeneration and Agrobacterium-mediated genetic transformation in radish (Raphanus sativus L.)

  • Plant Tissue Culture
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Meta-topolin (mT) is a novel aromatic cytokinin that stimulates morphogenesis and is an alternative source of cytokinins frequently employed in regeneration systems. Hence, the present research explored the prospect of mT for improving regeneration and genetic transformation efficiency. Cotyledonary node explants were cultured on optimum plant growth regulator medium incorporated with mT for enhanced shoot induction (93.6%, 2.0 mg l−1 BA and 0.9 mg l−1 mT), elongation (89.3%, 2.0 mg l−1 GA3 and 0.9 mg l−1 mT), and rooting (90.3%, 0.9 mg l−1 IBA and 0.9 mg l−1 mT) respectively. The plant transformation study was carried out through Agrobacterium-mediated transformation using the pCAMBIA1301 vector containing the LB4404 strain for standardizing transformation strategies. Transformed shoots and rooting were determined in two stages using 10 and 6 mg l−1 hygromycin B for exterminating chimeric explants. After co-cultivation, explants were cultured at the optimal concentration of 0.9 mg l−1 mT, 2.0 mg l−1 BA, 2.0 mg l−1 GA3, and 0.9 mg l−1 IBA for enhanced transformation efficiency (27.3%), corresponding to transformed regeneration without mT (18.6%) occurring with less efficiency. The existence of transgenes in the radish genome was ascertained by the GUS assay, PCR, RT-PCR, and qRT-PCR. Overall, our investigation demonstrated that including mT increases regeneration and enhances transformation efficiency in radish. Therefore, diverse radish varieties could use a designed transformation strategy to acquire essential traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

Similar content being viewed by others

References

  • Aremu AO, Bairu MW, Dolezal K, Finnie JF, Van Staden J (2012) Topolins: a panacea to plant tissue culture challenges? Plant Cell Tissue Organ Cult 108(1):1–16

    Article  CAS  Google Scholar 

  • Arun M, Subramanyam K, Mariashibu TS, Theboral J, Shivanandhan G, Manickavasagam M, Ganapathi A (2015) Application of sonication in combination with vacuum infiltration enhances the Agrobacterium-mediated genetic transformation in Indian soybean cultivars. Appl Biochem Biotechnol 175(4):2266–2287

    Article  CAS  PubMed  Google Scholar 

  • Bairu MW, Stirk WA, Dolezal K, Van Staden J (2007) Optimizing the micropropagation protocol for the endangered Aloe polyphylla: can meta-topolin and its derivatives serve as replacement for benzyladenine and zeatin? Plant Cell Tissue Organ Cult 90(1):15–23

    Article  CAS  Google Scholar 

  • Balasubramanian M, Anbumegala M, Surendran R, Arun M, Shanmugam G (2018) Elite hairy roots of Raphanus sativus (L.) as a source of antioxidants and flavonoids. 3 Biotech 8(2):128

  • Baskaran P, Ncube B, Van Staden J (2012) In vitro propagation and secondary product production by Merwilla plumbea (Lindl.) Speta. Plant Growth Regul 67(3):235–245

  • Baskaran P, Singh S, Van Staden J (2013) In vitro propagation, proscillaridin A production and antibacterial activity in Drimia robusta. Plant Cell Tissue Org Cult 114(2):259–267

    Article  CAS  Google Scholar 

  • Cho MA, Min SR, Ko SM, Liu JR, Choi PS (2008) Agrobacterium-mediated genetic transformation of radish (Raphanus sativus L.). Plant Biotechnology 25(2):205–208

  • Curtis IS, Nam HG, Sakamoto K (2004) Optimized shoot regeneration system for the commercial Korean radish ‘Jin Ju Dae Pyong.’ Plant Cell Tissue Organ Cult 77(1):81–87

    Article  CAS  Google Scholar 

  • Elayaraja D, Subramanyam K, Vasudevan V, Sathish S, Kasthurirengan S, Ganapathi A, Manickavasagam M (2019) Meta-topolin (mT) enhances the in vitro regeneration frequency of Sesamum indicum (L.). Biocatal Agric Biotechnol 21:101320

  • Gentile A, Frattarelli A, Nota P, Condello E, Caboni E (2017) The aromatic cytokinin meta-topolin promotes in vitro propagation, shoot quality and micrografting in Corylus colurna L. Plant Cell Tissue Organ Cult 128(3):693–703

    Article  CAS  Google Scholar 

  • Gómez-Campo C (1980) Morphology and morphotaxonomy of the Tribe Brassiceae. In: Tsunoda S, Hinata K, Gomez-Campo C (eds) Brassica crops and wild allies. Japanese Scientific Societies Press, Tokyo, pp 3–31

    Google Scholar 

  • Horgan R, Hewett EW, Horgan JM, Purse JG, Wareing PF (1975) A new cytokinin from Populus × robusta. Phytochemistry 19:1005–1008

    Article  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan NW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6(13):3901–3907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong WJ, Sung RM, Liu JR (1995) Somatic embryogenesis and plant regeneration in tissue cultures of radish (Raphanus sativus L.). Plant Cell Rep 14(10): 648–651

  • Kapildev G, Chinnathambi A, Sivanandhan G, Rajesh M, Jeyaraj M, Selvaraj N, Alharbi SA, Ganapathi A (2020) Meta-topolin and β-cyclodextrin enhance multiple shoot and root production in black gram Vigna mungo (L.) Hepper. Indian J Exp Biol 58(5):314–322

  • Karthik S, Pavan G, Manickavasagam M (2020) Nitric oxide donor regulates Agrobacterium-mediated genetic transformation efficiency in soybean [Glycine max (L.) Merrill]. Plant Cell Tiss Org Cult 141(3):655–660

  • Karthik S, Pavan G, Prasanth A, Selvam S, Appunu C, Manickavasagam M (2021) Improved in planta genetic transformation efficiency in bitter gourd (Momordica charantia). In Vitro Cell Dev Biol Plant 57(2):190–201

    Article  CAS  Google Scholar 

  • Karthik S, Pavan G, Sathish S, Siva R, Kumar PS, Manickavasagam M (2018) Genotype-independent and enhanced in planta Agrobacterium tumefaciens-mediated genetic transformation of peanut [Arachis hypogaea (L.)]. 3 Biotech 8(4):202

  • Koetle MJ, Finnie JF, Van Staden J (2010) In vitro regeneration in Dierama erectum Hilliard. Plant Cell Tissue Organ Cult 103(1):23–31

    Article  Google Scholar 

  • Kozar EV, Domblides EA, Soldatenko AV (2021) Embryogenesis of European Radish (Raphanus sativus L. subsp. sativus Convar. Radicula) in culture of isolated microspores in vitro. Plants 10(10):2117

  • Kurina AB, Kornyukhin DL, Solovyeva AE, Artemyeva AM (2021) Genetic diversity of phenotypic and biochemical traits in VIR radish (Raphanus sativus L.) germplasm collection. Plants 10 (9):1799

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Manawadu IP, Dahanayake N (2015) Effect of carbon sources in culture medium on shoot regeneration of radish (Raphanus sativus L.) Var. Beeralu Rabu. J Agric Res 2(4):277–280

  • Manivannan A, Kim JH, Kim DS, Lee ES, Lee HE (2019) Deciphering the nutraceutical potential of raphanus sativus-a comprehensive overview. Nutrients 11(2):402

    Article  CAS  PubMed Central  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • Muto N, Komatsu K, Matsumoto T (2021) Efficient Agrobacterium-mediated genetic transformation method using hypocotyl explants of radish (Raphanus sativus L.). Plant Biotechnology 38(4):457–461

  • Olhoft PM, Flagel LE, Donovan CM, Somers DA (2003) Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta 216(5):723–735

    Article  CAS  PubMed  Google Scholar 

  • Paek KY, Chandler SF, Thorpe TA (1987) Micropropagation of Raphanus sativus L. var. longipinnatus (Japanese radish) cv. Gungjung. Plant Cell Tiss Organ Cult 9(2):159–165

  • Park BJ, Liu Z, Kanno A, Kameya T (2005) Transformation of radish (Raphanus sativus L.) via sonication and vacuum infiltration of germinated seeds with Agrobacterium harboring a group 3LEA gene from B. napus. Plant Cell Rep 24(8):494–500

  • Pervitasari AN, Nugroho AB, Jung WH, Kim DH, Kim J (2022) An efficient Agrobacterium tumefaciens-mediated transformation of apical meristem in radish (Raphanus sativus L.) using a needle perforation. Plant Cell Tiss Organ Cult 148:305–318

    Article  CAS  Google Scholar 

  • Pua EC, Sim GE, Chi GL, Kong LF (1996) Synergistic effect of ethylene inhibitors and putrescine on shoot regeneration from hypocotyl explants of Chinese radish (Raphanus sativus L. var. longipinnatus Bailey) in vitro. Plant Cell Rep 15(9):685–690

  • Saeiahagh H, Mousavi M, Wiedow C, Bassett HB, Pathirana R (2019) Effect of cytokinins and sucrose concentration on the efficiency of micropropagation of ‘Zes006′ Actinidia chinensis var. chinensis, a red-fleshed kiwifruit cultivar. Plant Cell Tiss Organ Cult 138(1):1–10

  • Takaya Y, Kondo Y, Furukawa T, Niwa M (2003) Antioxidant constituents of radish sprout (Kaiware-daikon), Raphanus sativus L. J Agric Food Chem 51(27):8061–8066

    Article  CAS  PubMed  Google Scholar 

  • USDA (2020) Food Data Central. https://fdc.nal.usda.gov/fdc-app.html#/food-details/1103374/nutrients Accessed 28th July 2022

  • Wang XL, Chen XL, Cheng QNZ, Zhu KZ, Yang XH, Cheng ZM (2019) Agrobacterium-mediated transformation of Kalanchoe laxiflora. Hortic Plant J 5(5):221–228

    Article  Google Scholar 

  • Werbrouck SPO, Strnad M, Van Onckelen HA, Debergh PC (1996) Meta-topolin, an alternative to benzyladenine in tissue culture. Physiol Plant 98(2):291–297

    Article  CAS  Google Scholar 

  • Yellisetty V, Reddy LA, Mandapaka M (2015) In planta transformation of sorghum (Sorghum bicolor (L.) Moench) using TPS1 gene for enhancing tolerance to abiotic stresses. J Genet 94(3):425–434

  • Yu RG, Xu L, Zhang W, Wang Y, Luo XB, Wang RH, Zhu X, Xie Y, Karanja B, Liu L et al (2016) De novo taproot transcriptome sequencing and analysis of major genes involved in sucrose metabolism in radish (Raphanus sativus L.). Front Plant Sci 7:585

  • Zale JM, Agarwal S, Loar S, Steber CM (2009) Evidence for stable transformation of wheat by floral dip in Agrobacterium tumefaciens. Plant Cell Rep 28(6):903–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Dr. Sivabalan Karthik expresses his gratitude to the Jawaharlal Nehru Memorial Fund, New Delhi, India, for providing a Jawaharlal Nehru Scholarship (Ref no: SU-1/88/2016-17/79) to support this research. Furthermore, this research has been partially supported by Kangwon National University Post-Doctoral Support Program No-2021038. The first author sincerely thanks Prof. Dr. Hyeran Kim, Department of Biological Sciences, Kangwon National University, South Korea, for inspiring and sustaining the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markandan Manickavasagam.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthik, S., Sathish, S., Sahayarayan, J.J. et al. Meta-topolin enhances regeneration and Agrobacterium-mediated genetic transformation in radish (Raphanus sativus L.). In Vitro Cell.Dev.Biol.-Plant 58, 806–815 (2022). https://doi.org/10.1007/s11627-022-10311-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-022-10311-7

Keywords

Navigation