Skip to main content
Log in

Overexpression of MxFRO6, a FRO gene from Malus xiaojinensis, increases iron and salt tolerance in Arabidopsis thaliana

  • Biotechnology
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Iron (Fe) is one of the essential micronutrients required by all plants. In this study, a FRO gene was cloned from the iron-efficient genotype Malus xiaojinensis and named as MxFRO6. The MxFRO6 gene was 2238 bp in length, and the MxFRO6 protein contained 745 amino acids with a theoretical isoelectric point of 6.79, a predicted protein with a theoretical molecular mass of 82.71 kDa, and an overall average hydrophilicity coefficient of 0.413. Subcellular localization results showed that MxFRO6 protein was localized to the cell membrane. The expression level of MxFRO6 was higher in the new leaves and roots, which was markedly affected by salt treat, low-iron treat, and high-iron treat. When MxFRO6 was introduced into Arabidopsis thaliana, it greatly increased the iron and salt tolerance in transgenic plant. Increased expression of MxFRO6 in transgenic A. thaliana also resulted in higher activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and higher contents of proline and chlorophyll, while malondialdehyde (MDA) content was lower, especially in response to iron and salt stress. We argued that MxFRO6 is a new member of the FRO genes, and it may function as a regulator in response to iron stress and salt stress in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Similar content being viewed by others

References

  • Abadía J, López-Millán AF, Rombolà A, Abadía A (2002) Organic acids and Fe deficiency: a review. Plant Soil 241:75

    Article  Google Scholar 

  • An G, Watson BD, Chiang CC (1986) Transformation of tobacco, tomato, potato, and Arabidopsis thaliana using a binary Ti vector system. Plant Physiol 81:301–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connolly EL, Campbell HN, Grotz N, Prichard CL, Guerinot M (2003) Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional Control. Plant Physiol 133:1102–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding H, Duan L, Wu H, Yang R, Ling H, Li WX, Zhang F (2009) Regulation of AhFRO1, an Fe(III)-chelate reductase of peanut, during iron deficiency stress and intercropping with maize. Physiol Plant 136:274–283

    Article  CAS  PubMed  Google Scholar 

  • Gao C, Wang Y, Xiao DS, Qiu CP, Han DG, Zhang XZ, Wu T, Han ZH (2011) Comparison of cadmium-induced iron-deficiency responses and genuine iron-deficiency responses in Malus xiaojinensis. Plant Sci 181:269–274

    Article  CAS  PubMed  Google Scholar 

  • Han D, Du M, Zhou Z, Wang S, Li T, Han J, Xu T, Yang G (2020a) Overexpression of a Malus baccata NAC transcription factor gene MbNAC25 increases cold and salinity tolerance in Arabidopsis. Int J Mol Sci 21:1198

    Article  CAS  PubMed Central  Google Scholar 

  • Han D, Han J, Xu T, Li T, Yao C, Wang Y, Luo D, Yang G (2021) Isolation and preliminary functional characterization of MxWRKY64, a new WRKY transcription factor gene from Malus xiaojinensis Cheng et Jiang. In Vitro Cell Dev-Pl 57:202–213

    Article  CAS  Google Scholar 

  • Han D, Han J, Yang G, Wang S, Xu T, Li W (2020c) An ERF transcription factor gene from Malus baccata (L.) Borkh, MbERF11, affects cold and salt stress tolerance in Arabidopsis. Forests. 2020b, 11:514.

  • Han D, Wang Y, Zhang Z, Pu Q, Ding H, Han J, Fan T, Bai X, Yang G (2017) Isolation and functional analysis of MxCS3: a gene encoding a citrate synthase in Malus xiaojinensis, with functions in tolerance to Fe stress and abnormal flower in transgenic Arabidopsis thaliana. Plant Growth Regul 82:479–489

    Article  CAS  Google Scholar 

  • Han D, Zhang Z, Ding H, Chai L, Liu W, Li H, Yang G (2018a) Isolation and characterization of MbWRKY2 gene involved in enhanced drought tolerance in transgenic tobacco. J Plant Interact 13:163–172

    Article  CAS  Google Scholar 

  • Han D, Zhang Z, Ding H, Wang Y, Liu W, Li H, Yang G (2018b) Molecular cloning and functional analysis of MbWRKY3 involved in improved drought tolerance in transformed tobacco. J Plant Interact 13:329–337

    Article  CAS  Google Scholar 

  • Han D, Zhang Z, Ni B, Ding H, Liu W, Li W, Chai L, Yang G (2018c) Isolation and functional analysis of MxNAS3 involved in enhanced iron stress tolerance and abnormal flower in transgenic Arabidopsis. J Plant Interact 13:433–441

    Article  CAS  Google Scholar 

  • Han D, Zhou Z, Du M, Li T, Wu X, Yu J, Zhang P, Yang G (2020c) Overexpression of a Malus xiaojinensis WRKY transcription factor gene (MxWRKY55) increased iron and high salinity stress tolerance in Arabidopsis thaliana. In Vitro Cell Dev-Pl 56:600–609

    Article  CAS  Google Scholar 

  • Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe S, Matsuhashi S, Takahashi M (2010) Rice plants take up iron as an Fe3+ -phytosiderophore and as Fe2+. Plant J 45:335–346

    Article  Google Scholar 

  • Jain A, Connolly EL (2013) Mitochondrial iron transport and homeostasis in plants. Front Plant Sci 4:348

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeong J, Connolly EL (2009) Iron uptake mechanisms in plants: functions of the FRO family of ferric reductases. Plant Sci 176:709–714

    Article  CAS  Google Scholar 

  • Jiang K, Zhou M (2016) Cloning and functional characterization of PjPORB, a member of the POR gene family in Pseudosasa japonicacv Akebonosuji. Plant Growth Regul 79:95–106

    Article  CAS  Google Scholar 

  • Kong D, Chen C, Wu H, Li Y, Li J, Ling HQ (2013) Sequence diversity and enzyme activity of Ferric-chelate reductase LeFRO1 in tomato. J Genet Genomics 40:565–573

    Article  CAS  PubMed  Google Scholar 

  • Li L, Cai Q, Yu D, Guo C (2011) Overexpression of AtFRO6 in transgenic tobacco enhances ferric chelate reductase activity in leaves and increases tolerance to iron-deficiency chlorosis. Mol Biol Rep 38:3605–3613

    Article  CAS  PubMed  Google Scholar 

  • Li L, Cheng X, Ling HQ (2004) Isolation and characterization of Fe(III)-chelate reductase gene LeFRO1 in tomato. Plant Mol Biol 54:125–136

    Article  PubMed  Google Scholar 

  • Li Q, Xu K, Pan Y, Jiang B, Liu G, Jia Y, Zhang H (2014) Functional analysis of a novel chrysanthemum WRKY transcription factor gene involved in salt tolerance. Plant Mol Biol Rep 32:282–289

    Article  Google Scholar 

  • Liu W, Wu T, Li Q, Zhang X, Xu X, Li T, Han Z, Wang Y (2018) An ethylene response factor (MxERF4) functions as a repressor of Fe acquisition in Malus xiaojinensis. SCI Rep 8:1068

    Article  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Marschner H, Romheld V (1994) Strategies of plants for acquisition of iron. Plant Soil 165:261–274

    Article  CAS  Google Scholar 

  • Mukherjee I, Campbell NH, Connolly AEL (2006) Expression profiling of the Arabidopsis ferric chelate reductase (FRO) gene family reveals differential regulation by Fe and copper. Planta 223:1178–1190

    Article  CAS  PubMed  Google Scholar 

  • Na L, Zhang D, Liu H, Yin C, Zhang DB (2006) The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell 18:2999–3014

    Article  Google Scholar 

  • Pan Y, Wu L, Yu Z (2006) Effect of salt and drought stress on antioxidant enzymes activities and SOD isoenzymes of liquorice (Glycyrrhiza uralensis Fisch). Plant Growth Regul 49:157–165

    Article  CAS  Google Scholar 

  • Paolo B, Paolo P (1995) Characterization of NADH-dependent Fe3+-chelate reductases of maize roots. J Exp Bot 46:1497–1503

    Article  Google Scholar 

  • Park HY, Seok HY, Woo DH, Lee SY, Tarte V, Lee EH, Lee CH, Moon YH (2011) AtERF71/HRE2 transcription factor mediates osmotic stress response as well as hypoxia response in Arabidopsis. Biochem Biophy Res Commun 414:135–141

    Article  CAS  Google Scholar 

  • Pereira M, Santos C, Gomes A, Vasconcelos M (2014) Cultivar variability of iron uptake mechanisms in rice (Oryza sativa L.). Plant Physiol Bioch 85:21–30

    Article  CAS  Google Scholar 

  • Qin L, Rao Y, Li L, Huang J, Xu W, Li X (2013) Cotton GalT1 encoding a putative glycosyltransferase is involved in regulation of cell wall pectin biosynthesis during plant development. PLoS One 8:e59115

  • Ranieri A, Petacco F, Castagna A, Soldatini GF (2000) Redox state and peroxidase system in sunflower plants exposed to ozone. Plant Sci 159:159–167

    Article  CAS  PubMed  Google Scholar 

  • Robinson N, Procter C, Connolly E, Guerinot M (1999) A ferric-chelate reductase for iron uptake from soils. Nature 397:694–697

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki H (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13:61–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toka I, Planchais S, Cabassa C, Justin AM, Vos D, Richard L, Savouré A, Carol P (2010) Mutations in the hyperosmotic stress-responsive mitochondrial basic amino acid carrier 2 enhance proline accumulation in Arabidopsis. Plant Physiol 152:1851–1862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang A, Tan D, Takahashi A, Li T, Harada T (2007) MdERFs, two ethylene-response factors involved in apple fruit ripening. J Exp Bot 58:3743–3748

    Article  CAS  PubMed  Google Scholar 

  • Waters B, Blevins D, Eide D (2002) Characterization of FRO1, a pea ferric-chelate reductase involved in root iron acquisition. Plant Physiol 129:85–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H, Li L, Du J, Yuan Y, Cheng X, Ling HQ (2005) Molecular and biochemical characterization of the Fe(III)-chelate reductase gene family in Arabidopsis thaliana. Plant Cell Physiol 46:1505–1514

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Li J, Liu W, Yu Z, Shi Y, Lv B, Wang B, Han D (2015) Molecular cloning and characterization of MxNAS2, a gene encoding nicotianamine synthase in Malus xiaojinensis, with functions in tolerance to iron stress and misshapen flower in transgenic tobacco. Sci Hortic 183:77–86

    Article  CAS  Google Scholar 

  • Zhang L, Xi D, Luo L, Meng F, Li Y, Wu C, Guo X (2011) Cotton GhMPK2 is involved in multiple signaling pathways and mediates defense responses to pathogen infection and oxidative stress. FEBS J 278:1367–1378

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Kong J, Wang Y, Xu X, Liu L, Li T, Han Z, Zhu Y (2009) Isolation and characterisation of a nicotianamine synthase gene MxNas1 in Malus xiaojinensis. J Hortic Sci Biotechnol 84(1):47–52

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (32172521), Postdoctoral Scientific Research Development Fund of Heilongjiang Province, China (LBH-Q16020), the Natural Science Fund Joint Guidance Project of Heilongjiang Province (LH2019C031), and SIPT Program for Undergraduates of Northeast Agricultural University.

National Natural Science Foundation of China,32172521,Deguo HAN,Heilongjiang Provincial Postdoctoral Science Foundation,LBH-Q16020,Deguo HAN,the Natural Science Fund Joint Guidance Project of Heilongjiang Province,LH2019C031,Wenhui Li,SIPT Program for Undergraduates of Northeast Agricultural University

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenhui Li or Deguo Han.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 29 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhong, J., Huang, P. et al. Overexpression of MxFRO6, a FRO gene from Malus xiaojinensis, increases iron and salt tolerance in Arabidopsis thaliana. In Vitro Cell.Dev.Biol.-Plant 58, 189–199 (2022). https://doi.org/10.1007/s11627-022-10256-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-022-10256-x

Keywords

Navigation