Skip to main content
Log in

Cryopreservation of somatic embryos from Petiveria alliacea L. by different techniques based on vitrification

  • Plant Tissue Culture
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Petiveria alliacea L. is a medicinal plant originating from the Amazon region. This study describes an efficient cryopreservation protocol for somatic embryos (SEs) produced from roots of P. alliacea based on the comparison of vitrification, encapsulation-dehydration, and D cryo-plate techniques. With the vitrification technique, SEs treated with PVS2 solution (0.4 M sucrose, 3.3 M glycerol, 2.4 M ethylene glycol, and 1.9 M DMSO) for 30 min displayed high viability (85%) and intermediate proliferation recovery (about 12 adventitious SEs produced from original SEs [SEs/SE] after 90 d of culture). With the encapsulation-dehydration technique, lower viability (70%) and very low proliferation recovery (about two SEs/SE) were achieved with cryopreserved SEs dehydrated for 10 min in a laminar air flow cabinet. The D cryo-plate technique led to high viability (85%) and proliferation recovery (19 SEs/SE) of cryopreserved SEs after 90 min dehydration. In the experimental conditions tested, the D cryo-plate method was the most efficient technique for cryopreservation of P. alliacea SEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  • Cantelmo L, Soares BO, Rocha LP, Pettinelli JA, Callado CH, Mansur E, Castellar A, Gagliardi RF (2013) Repetitive somatic embryogenesis from leaves of the medicinal plant Petiveria alliacea L. Plant Cell Tiss Org 115:385–393

    Article  CAS  Google Scholar 

  • Corredoria E, San-José MC, Ballester A, Vieitez AM (2014) Cryopreservation of zygotic embryo axes and somatic embryos of european chestnut. Cryo-Lett 25:33–42

    Google Scholar 

  • De Sousa JR, Demuner AJ, Pinheiro JA, Breitmaier E, Cassels BK (1990) Dibenzyltrisulphide and trans-N-methyl-4-methoxyproline from Petiveria alliacea. Phytochemistry 29:3653–3655

    Article  CAS  Google Scholar 

  • Engelmann F (2011) Cryopreservation of plant biodiversity conservation. In vitro Cell Dev-Pl 47:5–16

  • Engelmann F (2014) Cryopreservation of clonal crops: a review of key parameters. Acta Hortic 1039:31–39

  • Engelmann F, Gonzalez-Arnao MT, Wu Y, Escobar R (2008) Development of encapsulation dehydration. In: Reed BM (ed) In: Plant cryopreservation: a practical guide. Springer-Verlag, New York, pp 59–75

    Chapter  Google Scholar 

  • Fahy GM, MacFarlane DR, Angell CA, Meryman HT (1984) Vitrification as an approach to cryopreservation. Cryobiology 21:407–426

    Article  CAS  PubMed  Google Scholar 

  • Gagliardi RF, Pacheco GP, Valls JFM, Mansur E (2002) Cryopreservation of cultivated and wild Arachis species embryonic axes using desiccation and vitrification methods. Cryo-Lett 23:61–68

    CAS  Google Scholar 

  • Germano DHP, Caldeira TTO, Mazella AAG, Sertie JAA, Bacchi EM (1993) Topical anti-inflammatory activity and toxicity of Petiveriaalliacea. Fitoterapia 64:459–467

    Google Scholar 

  • González-Arnao MT, Engelmann F (2006) Cryopreservation of plant germplasm using the encapsulation-dehydration technique: review and case study on sugarcane. Cryo-Lett 27:155–168

    Google Scholar 

  • González-Arnao MT, Ortega JJ, Navarro L, Duran-Vila N (2003) Cryopreservation of ovules and somatic embryos of citrus using the encapsulation-dehydration technique. Cryo-Lett 24:85–94

    Google Scholar 

  • Kim HH, Lee YG, Park S, Lee S, Baek H, Cho E, Engelmann F (2009a) Development of alternative loading solutions in droplet-vitrification procedures. Cryo-Lett 30:291–299

    CAS  Google Scholar 

  • Kim HH, Lee YG, Shin DJ, Kim T, Cho EG, Engelmann F (2009b) Development of alternative plant vitrification solutions in droplet-vitrification procedures. Cryo-Lett 30:320–334

    CAS  Google Scholar 

  • Kubec R, Musah R (2001) Cysteine sulfoxide derivatives in Petiveria alliacea. Phytochemistry 58:981–985

    Article  CAS  PubMed  Google Scholar 

  • Lambardi M, De Carlo A, Capuana M (2005) Cryopreservation of embryogenic callus of Aesculus hippocastanum L. by vitrification one-steps freezing. Cryo-Lett 26:185–192

    Google Scholar 

  • Lopes-Martins RAB, Pegoraro DH, Woisky R, Penna SC, JAA S (2002) The anti-inflammatory and analgesic effects of a crude extract of Petiveria alliacea L. (Phytolaccaceae). Phytomedicine 9:245–248

    Article  CAS  PubMed  Google Scholar 

  • Luz DA, Pinheiro AM, Silva ML, Monteiro MC, Prediger RD, Maia CSF, Fontes-Junior EA (2016) Ethnobotany, phytochemistry and neuropharmacological effects of Petiveria alliacea L. (Phytolaccaceae): a review. J Ethnopharmacol 185:182–201

    Article  CAS  PubMed  Google Scholar 

  • Mata-Greenwood E, Ito A, Westenburg H, Cui B, Mehta RG, Kinghorn AD, Pezzuto JM (2001) Discovery of novel inducers of cellular differentiation using HL-60 promyelocytic cells. Anticancer Res 21:1763–1770

    CAS  PubMed  Google Scholar 

  • Matsumoto T, Sakai A, Yamada K (1994) Cryopreservation of in vitro grown apical meristems of wasabi (Wasabi japonica) by vitrification and subsequent high plant regeneration. Plant Cell Rep 13:442–446

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto T, Yamamoto S, Fukui K, Rafique T, Engelmann F, Niino T (2015) Cryopreservation of persimmon shoot tips from dormant buds using the d-cryoplate technique. Hort J 84:106–110

    Article  CAS  Google Scholar 

  • Murashige T, Skoog FA (1962) A revised medium for rapid growth and bioassays with tobacco tissues cultures. Plant Physiol 15:473–479

    Article  CAS  Google Scholar 

  • Niino T, Wunna WK, Nohara N, Rafique T, Yamamoto S, Fukui K, Valle M, Arizaga M, Martinez CR, Matsumoto T, Engelmann F (2014) Cryopreservation of mat rush lateral buds by air dehydration using aluminumcryo-plates. Plant Biotechnol 31:281–287

    Article  CAS  Google Scholar 

  • Niino T, Yamamoto S, Fukui K, Martinez C, Roman C, Arizag M, Matsumoto T, Engelmann F (2013) Dehydration improves cryopreservation of Mat Rush (Juncus decipiens Nakai) basal stem buds on Cryo-plates. Cryo-Lett 4:549–560

    Google Scholar 

  • Nishizawa S, Sakai A, Amano Y, Matsuzawa T (1993) Cryopreservation of asparagus (Asparagus officinalis L.) embryogenic suspension cells and subsequent plant regeneration by vitrification. Plant Sci 91:67–73

    Article  CAS  Google Scholar 

  • Panis B, Piette B, Swennen R (2005) Droplet vitrification of apical meristems: a cryopreservation protocol applicable to all Musaceae. Plant Sci 168:45–55

    Article  CAS  Google Scholar 

  • Pettinelli JA, Pimenta M, Soares BO, Garcia RO, Mansur E, Engelmann F, Gagliardi RF (2015) Avaliação do protocolo de vitrificação na criopreservação de embriões somáticos de Petiveria alliacea L. Aproximando 1:1–5

    Google Scholar 

  • Pettinelli JA, Soares BO, Cantelmo L, Pimenta M, Cochofel J, Garcia RO, Mansur E, Gagliardi RF (2012) Evaluation of the survival of somatic embryos of Petiveria alliacea L. cryopreserved after different pretreatments with sucrose and PVS2. Cryobiology 65:363

    Article  Google Scholar 

  • Rafique T, Shin-ichi Y, Kuniak F, Tanaka D, Arizaga MV, Abbas M, Matsumoto T, Niino T (2016) Cryopreservation of shoot-tips from different sugarcane varieties using d-cryoplate technique. Pak J Agr Sci 53:151–158

    Google Scholar 

  • Reed BM (2008) Plant cryopreservation: a practical guide. Springer-Verlag, New York

    Book  Google Scholar 

  • Rosner H, Williams LAD, Jung A, Kraus W (2001) Disassembly of microtubules and inhibition of neurite outgrowth, neuroblastoma cell proliferation and MAP kinase tyrosine dephosphorylation by dibenzyltrisulphide. Biochim Biophys Acta 40:166–177

    Article  Google Scholar 

  • Sakai A, Engelmann F (2007) Vitrification, encapsulation-vitrification and droplet-vitrification: a review. Cryo-Lett 28:151–172

    CAS  Google Scholar 

  • Sakai A, Hirai D, Niino T (2008) In: Plant cryopreservation: A practical guide. In: Development of PVS-based vitrification and encapsulation–vitrification protocols, pp 33–57

    Google Scholar 

  • Sakai A, Kobayashi S, Oiyama I (1990) Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. Var. brasiliensis Tanaka) by vitrification. Plant Cell Rep 9:30–33

    Article  CAS  PubMed  Google Scholar 

  • Salma M, Fki L, Engelmann-Sylvestre I, Niino T, Engelmann F (2014) Comparision of droplet-vitrification and D-cryoplate for cryopreservation of date palm (Phoenix dactylifera L.) polyembryogenic masses. Sci Hortic 179:91–97

    Article  CAS  Google Scholar 

  • Sertié JA, Hanada S, Sudo LS, Germano DHP (1995) Petiveria alliacea-antiinflammatory effect and gastric mucous protection. J Dent Res 74:793

    Google Scholar 

  • Shibli RA, Al-Juboory KM (2000) Cryopreservation of “Nabali” olive (Olea europea L.) somatic embryos by encapsulation-dehydration and encapsulation-vitrification. Cryo-Lett 21:657–366

    Google Scholar 

  • Soares BO (2016) Monitoramento da estabilidade genética de plantas de Petiveria alliacea L. produzidas in vitro através de marcadores fitoquímicos e moleculares. Tese de doutorado. Universidade do Estado do Rio de Janeiro

  • Soares BO, Fernandes DC, Cantelmo L, Rocha LP, Pettinelli JA, Christo AG, Coelho MGP, Gagliardi RF (2013) Botanical characterization of Petiveria alliacea L. from Rio de Janeiro, Brazil: systematic and funcional implications. Plant Biosyst 147:411–417

    Article  Google Scholar 

  • Towill LE, Mazur P (1975) Studies on the reduction of 2.3.5-triphenyltetrazolium chloride as a viability assay for plant tissue cultures. Can J Botany 53:1097–1102

    Article  Google Scholar 

  • Webster S, Mitchell S, Gallimore W, Ahmad M (2008) Biosynthesis of Dibenzyl Trisulfide (DTS) from somatic embryos and rhizogenous/embryogenic callus derived from guinea hen weed (Petiveria alliacea L.) leaf explant. In vitro Cell Dev-Pl 44:112–118

  • Williams LAD, The TL, Gardner MT, Fletcher CK, Naravani A, Bibbs N, Fleishacker R (1997) Immunomodulatory activities of Petiveria alliacea L. Phytother Res 11:251–253

    Article  Google Scholar 

  • Yamamoto S, Fukui K, Rafique T, Khan NI, Martinez CR, Sekizawa K, Matsumoto T, Niino T (2012) Cryopreservation of in vitro-grown shoot tips of strawberry by the vitrification method using aluminum cryo-plates. Plant Gen Resour 10:14–19

    Article  CAS  Google Scholar 

  • Yamamoto S, Rafique T, Priyantha WS, Fukui K, Matsumoto T, Niino T (2011) Development of a cryopreservation procedure using aluminum cryo-plates. Cryo-Lett 32:256–265

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Coordination of Improvement of Higher Education Personnel (CAPES/Brazil) and to the National Council for Scientific and Technological Development (CNPq/Brazil) for funding an international collaborative research project (Programme Science without Borders) between UERJ (University of the State of Rio de Janeiro) and IRD (Institut de Recherche pour le Développement). This study was also supported by the Carlos Chagas Filho Foundation for Research Support of the State of Rio de Janeiro (FAPERJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Fatima Gagliardi.

Additional information

Editor: Barbara Reed

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Almeida Pettinelli, J., de Oliveira Soares, B., Cantelmo, L. et al. Cryopreservation of somatic embryos from Petiveria alliacea L. by different techniques based on vitrification. In Vitro Cell.Dev.Biol.-Plant 53, 339–345 (2017). https://doi.org/10.1007/s11627-017-9820-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-017-9820-y

Keywords

Navigation