Skip to main content
Log in

Effect of low temperature on in vitro androgenesis of carrot (Daucus carota L.)

  • Biotechnology
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Low temperature (4°C) is often applied to donor plants to induce androgenesis in subsequent anther culture. Material for Daucus carota L. (carrot) anther cultures was collected after 9, 12, and 21 d of cool treatment. The most effective treatment proved to be the use of 4°C for 12 d, inducing 24.3 embryos per 100 anthers. Plants were regenerated from embryos, adapted, and then their ploidy and homozygosity were assessed. The analysis of ploidy performed by flow cytometry revealed that all plants obtained through androgenesis contained the amount of DNA corresponding to 2x chromosomes. When assessed for homozygosity, the population was found to consist mainly of homozygotes, 77.8% for glucose-6-phosphate isomerase (PGI, EC 5.3.1.9) and 75.0% aspartate aminotransferase (AAT, EC 2.6.1.1) which indicated the gametic origin of those plants. Distribution of homozygotes and heterozygotes did not depend on the applied thermal shock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.

Similar content being viewed by others

References

  • Adamski T, Krystkowiak K, Kuczyńska A, Mikołajczak K, Ogrodowicz P, Ponitka A, Surma M, Ślusarkiewicz-Jarzina A (2014) Segregation distortion in homozygous lines obtained via anther culture and maize doubled haploid methods in comparison to single seed descent in wheat (Triticum aestivum L.). Electron J Biotechnol 17:6–13

    Article  Google Scholar 

  • Andersen SB, Christiansen I, Farestveit B (1990) Carrot (Daucus carota L.): in vitro production of haploids and field trials. In: Bajaj YPS (ed) Biotechnology in Agriculture and Forestry, vol. 12. Haploids in crop improvement I. Springer, Berlin, Heidelberg, pp 393–402

  • Bajaj YPS (1990) In vitro production of haploid and their use in cell genetic and plant breeding. In: Bajaj YPS (ed) Biotechnology in Agriculture and Forestry, vol 12, Haploids in crop improvement I. Springer, Berlin, Heidelberg, pp 393–402

  • Bartošová Z, Bohuš O, Takáč T, Kormuťák A, Preťová A (2005) Using enzyme polymorphism to identify the gametic origin of flax regenerants. Acta Biol Cracov Bot 47:173–178

    Google Scholar 

  • Bhojwani SS, Dantu PK (2010) Haploid plants, Paul Anthony. In: Davey MR, Anthony P (eds) Plant cell culture essential methods, Ch 4. John Wiley & Sons, Ltd, Chichester, UK, pp 61–76

    Chapter  Google Scholar 

  • Ferrie AMR (2007) Doubled haploid production in nutraceutical species: a review. Euphytica 158:347–357

    Article  Google Scholar 

  • Ferrie AMR, Bethune TD, Mykytyshyn M (2011) Microspore embryogenesis in Apiaceae. Plant Cell Tiss Org 104:399–406

    Article  Google Scholar 

  • Ferrie AMR, Möllers C (2011) Haploids and doubled haploids in Brassica spp. for genetic and genomic research. Plant Cell Tiss Org 104:375–386

    Article  Google Scholar 

  • Forster BP, Heberle-Bors E, Kasha KJ, Touraev A (2007) The resurgence of haploids in higher plants. Trends Plant Sci 12:368–375

    Article  CAS  PubMed  Google Scholar 

  • Galbraith DW (1984) Flow cytometric analysis of the cell cycle. Cell Cult Somat Cell Genet Plant 1:765–777

    Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:148–151

    Article  Google Scholar 

  • Gottlieb LD (1973) Enzyme differentiation and phylogeny in Clarkia franciscana, C. rubicunda and C. amoena. Evolution 27:205–214

    Article  Google Scholar 

  • Górecka K, Krzyżanowska D, Górecki R (2005a) The influence of several factors on the efficiency of androgenesis in carrot. J App Genet 46:265–269

    Google Scholar 

  • Górecka K, Krzyżanowska D, Kiszczak W, Górecki R (2005b) Embryo induction in anther culture of Daucus carota L. Veg Crop Res Bull 63:25–32

    Google Scholar 

  • Górecka K, Krzyżanowska D, Kiszczak W, Kowalska U (2009a) Plant regeneration from carrot (Daucus carota L.) anther culture derived embryos. Acta Physiol Plant 31:1139–1145

    Article  Google Scholar 

  • Górecka K, Krzyżanowska D, Kiszczak W, Kowalska U, Górecki R (2009b) Obtaining plants by inducing secondary embryogenesis in carrot androgenetic embryos. Adv Agric Sci Probl Iss 53:43–50

    Google Scholar 

  • Hu KL, Matsubara S, Murakami K (1993) Haploid plant production by anther culture in carrot (Daucus carrota L.). J Japan Soc Horticult Sci 62:561–565

    Article  CAS  Google Scholar 

  • Irikova T, Grozeva S, Rodeva V (2011) Anther culture in pepper (Capsicum annuum L.) in vitro. Acta Physiol Plant 33:1559–1570

    Article  CAS  Google Scholar 

  • Islam SSM, Tuteja N (2012) Enhancement of androgenesis by abiotic stress and other pretreatments in major crop species. Plant Sci 182:134–144

    Article  CAS  PubMed  Google Scholar 

  • Jauhar PP (2003) Haploid and doubled haploid production in durum wheat by anther culture. In: Maluszynski M, Kasha KJ, Forster BP, Szareijko I (eds) Doubled haploid production in crop plants: a manual. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 167–172

    Chapter  Google Scholar 

  • Kasha KJ, Hu TC, Oro R, Simion E, Shim YS (2001) Nuclear fusion leads to chromosome doubling during mannitol pretreatment of barley (Hordeum vulgare L.) microspores. J Exp Bot 52:1227–1238

    Article  CAS  PubMed  Google Scholar 

  • Kasha KJ, Ziauddin A, Cho UH (1990) Haploids in cereal improvement: anther and microspore culture. In: Gustafson JP (ed) Gene manipulation in plant improvement II. Plenum, New York, pp 213–235

  • Keller WA, Armstrong KC (1977) Embryogenesis and plant regeneration in Brassica napus anther cultures. Can J Bot 55:1383–1388

    Article  Google Scholar 

  • Keller WA, Armstrong KC (1983) Production of haploids via anther culture in Brassica oleracea var. italica. Euphytica 32:151–159

    Article  Google Scholar 

  • Khatun R, Islam SMS, Ara I, Tuteja N, Bari MA (2012) Effect of cold pretreatment and different media in improving anther culture response in rice (Oryza sativa L.) Bangladesh. Indian J Biotechnol 11:58–463

    Google Scholar 

  • Kiełkowska A, Adamus A (2010) In vitro culture of unfertilized ovules in carrot (Daucus carota L.). Plant Cell Tiss Org 102:309–319

    Article  Google Scholar 

  • Kiszczak W, Krzyżanowska D, Strycharczuk K, Kowalska U, Wolko B, Górecka K (2011) Determination of ploidy and homozygosity of carrot plants obtained from anther cultures. Acta Physiol Plant 33:401–407

    Article  Google Scholar 

  • Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47 /260:583–621

    Article  Google Scholar 

  • Krzyżanowska D, Górecka K (2008) Effect of various stress factors on the induction of androgenesis in anther cultures of Brussels sprouts. (Brassica oleracea L. var. gemmifera). Veg Crop Res Bull 69:5–13

  • Lazaridou TB, Lithourgidis AS, Kotzamanidis ST, Roupakias DG (2005) Anther culture response of barley genotypes to cold pretreatments and culture media. Russ J Plant Physiol 52:696–699

    Article  CAS  Google Scholar 

  • Lulsdorf M, Yuan HY, Slater S, Vandenber A, Han XM, Zaharia LI (2012) Androgenesis-inducing stress treatments change phytohormone levels in anthers of three legume species (Fabaceae). Plant Cell Rep 31:1255–1267

    Article  CAS  PubMed  Google Scholar 

  • Maraschin SF, de Priester W, Spaink HP, Wang M (2005) Androgenic switch: an example of plant embryogenesis from the male gametophyte perspective. J Exp Bot 56:1711–1726

    Article  CAS  PubMed  Google Scholar 

  • Matsubara S, Dohya N, Murakami K, Nishio T, Dore C (1995) Callus formation and regeneration of adventitious embryos from carrot, fennel and mitsuba microspores by anther and isolated microspore cultures. Acta Horticult 392:129–137

    Google Scholar 

  • Mikołajczyk S, Broda Z, Weigt D (2012) The effect of cold temperature stress on the viability of rye (Secale cereale L.) microspores. BioTechnologia. J Biotechnol 93(2):139–142

  • Möllers C, Iqbal MCM (2009) Doubled haploids in breeding winter oilseed rape. In: Touraev A, Forster BP, Mochan Jain S (eds) Advances in haploid production in higher plants. Springer Science Business Media B.V. pp 161–169

  • Nitsch C, Norreel B (1973) Factors favoring the formation of androgenetic embryos in anther culture. In: Adrian M (ed) Genes, enzymes and populations. Plenum Publishing Co, New York, pp 129–144

    Chapter  Google Scholar 

  • Ochatt S, Pech C, Grewal R, Conreux C, Lulsdorf M, Jacas L (2009) Abiotic stress enhances androgenesis from isolated microspores of some legume species (Fabaceae). J Plant Physiol 66:1314–1328

    Article  Google Scholar 

  • Oleszczuk S, Rabiza-Swider J, Zimny J, Lukaszewski AJ (2011) Aneuploidy among androgenic progeny of hexaploid triticale (XTriticosecale Wittmack). Plant Cell Rep 30:575–586

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Özkum D, Tipirdamaz R (2002) Effects of L-proline and cold treatment on pepper (Capsicum annuum L.) anther culture. In: Gökçekus H, Türker U, LaMoreaux JW (eds) Survival and sustainability environmental earth sciences. P.E. LaMoreaux and Associates, Tuscaloosa, USA, pp 137–143

    Google Scholar 

  • Pauk J, Manninen O, Mattila I, Salo Y, Puli S (1991) Androgenesis in hexaploid spring wheat F2 population and their parents using a multiple-step regeneration system. Plant Breed 107:18–27

    Article  Google Scholar 

  • Pauk J, Puolimatka M, Tóth KL, Monostori T (2000) In vitro androgenesis of triticale in isolated microspore culture. Plant Cell Tissue Organ Cult 61:221–229

    Article  CAS  Google Scholar 

  • Seguí-Simarro JM, Nuez F (2008) How microspores transform into haploid embryos: changes associated with embryogenesis induction and microspore derived embryogenesis. Physiol Plant 134:1–12

    Article  PubMed  Google Scholar 

  • Selander RK, Smith MH, Yang SY, Johnson WE, Gentry JB (1971) Biochemical polymorphism and systematics in the genus Peromyscus. Variation in the old-field mouse (Peromyscus polionotus). Univ Tex Publ Genet 7103:49–90

    Google Scholar 

  • Shariatpanahi ME, Bal U, Heberle-Bors E, Touraev A (2006) Stresses applied for the reprogramming of plant microspores towards in vitro embryogenesis. Physiol Plant 127:519–534

    Article  CAS  Google Scholar 

  • Shim YS, Kasha KJ, Simion E, Letarte J (2006) The relationship between induction of embryogenesis and chromosome doubling in microspore cultures. Protoplasma 228:79–86

    Article  CAS  PubMed  Google Scholar 

  • Smýkalová I, Horáček J, Kubošiová M, Šmirous P, Soukup A, Gasmanová N, Griga M (2012) Induction conditions for somatic and microspore derived structures and detection of haploid status by isozyme analysis in anther culture of caraway (Carum carvi L.). In Vitro Cell Dev Biol Plant 48:30–39

  • Smýkalová I, Šmirous P, Kubošiová M, Gasmannová N, Griga M (2009) Doubled haploid production via anther culture in annual, winter type of caraway (Carum carvi L.). Acta Physiol Plant 31:21–31

    Article  Google Scholar 

  • Stimpson KM, Matheny JE, Sullivan BA (2012) Dicentric chromosomes: unique models to study centromere function and inactivation. Chromosom Res 20:595–605

    Article  CAS  Google Scholar 

  • Sunderland N, Roberts M (1979) Cold-pretreatment of excised flower buds in float culture of tobacco anthers. Ann Bot 43:405–414

    Google Scholar 

  • Szczuka E, Bohdanowicz J, Wierczyńska J, Sobieska J, Pietrusiewicz J (2006) Disturbances in microsporogenesis and pollen grain development in Gagea lutea (L.) Ker. Gaw. Acta Agrobot 59:71–82 (in Polish)

    Article  Google Scholar 

  • Ślesak I, Miszalski Z (1999) Stress reaction in Mesembryanthenum cristallinum L. Bot News 43:47–58

    Google Scholar 

  • Tai GCC, Xiong XY (2003) Haploid production of potatoes by anther culture. In: Małuszyński M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants, a manual. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 229–234

    Chapter  Google Scholar 

  • Touraev A, Vicente O, Heberle-Bors E (1997) Initiation of microspore embryogenesis by stress. Trends Plant Sci 2:297–302

    Article  Google Scholar 

  • Tyukavin GB, Shmykova NA, Monakhova MA (1999) Cytological study of embryogenesis in cultured carrot anthers. Russ J Plant Physiol 46:767–773

    CAS  Google Scholar 

  • Uváčková Ľ, Takáč T, Boehm N, Obert B, Šamaj J (2012) Proteomic and biochemical analysis of maize anthers after cold pretreatment and induction of androgenesis reveals an important role of anti-oxidative enzymes. J Proteome 75:1886–1894

    Article  Google Scholar 

  • Wang M, van Bergen S, van Duijn B (2000) Insights into a key developmental switch and its importance for efficient plant breeding. Plant Physiol 124:523–530

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weeden FN, Gottlieb LD (1980) Isolation of cytoplasmic enzymes from pollen. Plant Physiol 66:400–403

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zheng MY (2003) Microspore culture in wheat (Triticum aestivum)—doubled haploid production via induced embryogenesis. Plant Cell Tissue Organ Cult 73:213–230

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financed by the National Centre for Research and Development, Poland project no. NR 12001106.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krystyna Górecka.

Additional information

Editor: John Forster

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiszczak, W., Kowalska, U., Kapuścińska, A. et al. Effect of low temperature on in vitro androgenesis of carrot (Daucus carota L.). In Vitro Cell.Dev.Biol.-Plant 51, 135–142 (2015). https://doi.org/10.1007/s11627-015-9665-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-015-9665-1

Keywords

Navigation