Skip to main content
Log in

Androgenesis-inducing stress treatments change phytohormone levels in anthers of three legume species (Fabaceae)

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Legumes are recalcitrant to androgenesis and induction protocols were only recently developed for pea (Pisum sativum L.) and chickpea (Cicer arietinum L.), albeit with low regeneration frequencies. Androgenesis is thought to be mediated through abscisic acid (ABA) but other phytohormones, such as auxins, cytokinins, and gibberellins, have also been implicated. In view of improving induction protocols, the hormone content of pea, chickpea, and lentil anthers was measured after exposure to cold, centrifugation, electroporation, sonication, osmotic shock, or various combinations thereof using an analytical mass spectrometer. Indole-3-acetic acid (IAA) had a key function during the induction process. In pea, high concentrations of IAA-asparagine (IAA-Asp), a putative IAA metabolite, accumulated during the application of the different stresses. In chickpea, the IAA-Asp concentration increased 30-fold compared to pea but only during the osmotic shock treatment and likely as a result of the presence of exogenous IAA in the medium. In contrast, no treatment in lentil (Lens culinaris) invoked such an increase in IAA-Asp content. Of the various cytokinins monitored, only cis zeatin riboside increased after centrifugation and electroporation in pea and possibly chickpea. No bioactive gibberellins were detected in any species investigated, indicating that this hormone group is likely not linked to androgenesis in legumes. In contrast to the other stresses, osmotic shock treatment caused a reduction in the levels of all hormones analyzed, with the exception of IAA-Asp in chickpea. A short period of low hormone content might be a necessary transition phase for androgenesis induction of legumes.

Key message Five androgenesis-inducing stress treatments changed content of ABA, auxin and cytokinin in anthers of three legumes. Osmotic shock treatment differed because it reduced hormone content to very low levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

ABA-GE:

ABA-glucose ester

7′OH-ABA:

7′-Hydroxy ABA

BAP:

Benzyl amino purine

C:

Centrifugation

4-Cl-IAA:

4-Chloroindole-3-acetic acid

2,4-D:

2,4-Dichlorophenoxyacetic acid

DH:

Doubled-haploid

DPA:

Dihydrophaseic acid

E:

Electroporation

GA1–53 :

Gibberellins 1–53

IAA:

Indole-3-acetic acid

IAA-Ala:

N-(Indole-3-yl-acetyl)-alanine

IAA-Asp:

N-(Indole-3-yl-acetyl)-aspartic acid

IAA-Glu:

N-(Indole-3-yl-acetyl)-glutamic acid

IAA-Leu:

N-(Indole-3-yl-acetyl)-leucine

IBA:

Indole-3-butyric acid

2iP:

Isopentenyladenine

iPA:

Isopentenyladenosine

NAA:

1-Naphthaleneacetic acid

O:

Osmotic shock

PA:

Phaseic acid

S:

Sonication

Z:

Zeatin

ZOG:

Zeatin-O-glucoside

dhZ:

Dihydro-zeatin

ZR:

Zeatin riboside

References

  • Abrams SR, Nelson K, Ambrose SJ (2003) Deuterated abscisic acid analogs for mass spectrometry and metabolism studies. J Label Compd Radiopharmaceut 46:273–283

    Article  CAS  Google Scholar 

  • Alabadi D, Blázquez MA, Carbonell J, Ferrándiz C, Pérez-Amador MA (2009) Instructive roles for hormones in plant development. Int J Dev Biol 53:1597–1608

    Article  PubMed  CAS  Google Scholar 

  • Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of auxin in regulating Arabidosis flower development. Planta 223:315–328

    Article  PubMed  CAS  Google Scholar 

  • Appleford NEJ, Evans DJ, Lenton PG, Croker SJ, Devos KM, Phillips AL, Hedden P (2006) Function and transcript analysis of gibberellin-biosynthetic enzymes in wheat. Planta 223:568–582

    Article  PubMed  CAS  Google Scholar 

  • Böttcher C, Keyzers RA, Boss PK, Davies C (2010) Sequestration of auxin by the indole-3-acetic acid-amido synthetase GH3-1 in grape berry (Vitis vinifera L.) and the proposed role of auxin conjugation during ripening. J Exp Bot 61:3615–3625

    Article  PubMed  Google Scholar 

  • Brugiere N, Jiao S, Hantke S, Zinselmeier C, Roessler JA, Niu X, Jones RJ, Habben JE (2003) Cytokinin oxidase gene expression in maize is localized to the vasculature, and is induced by cytokinins, abscisic acid, and abiotic stress. Plant Physiol 132:1228–1240

    Article  PubMed  CAS  Google Scholar 

  • Chiwocha SDS, Abrams SR, Ambrose SJ, Cutler AJ, Loewen M, Ross ARS, Kermode AR (2003) A method for profiling classes of plant hormones and their metabolites using liquid chromatography-electrospray ionization tandem mass spectrometry: analysis of hormone regulation of thermodormancy of lettuce (Lactuca sativa L.) seeds. Plant J 35:405–417

    Article  PubMed  CAS  Google Scholar 

  • Chiwocha SDS, Cutler AJ, Abrams SR, Ambrose SJ, Yang J, Ross ARS, Kermode AR (2005) The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination. Plant J 42:35–48

    Article  PubMed  CAS  Google Scholar 

  • Croser JS, Lulsdorf MM, Davies PA, Clarke HJ, Bayliss KL, Mallikarjuna N, Siddique KHM (2006) Toward doubled haploid production in the Fabaceae: progress, constraints, and opportunities. Crit Rev Plant Sci 25:139–157

    Article  Google Scholar 

  • DeMason DA, Polowick PL (2009) Patterns of DR5:GUS expression in organs of pea (Pisum sativum). Int J Plant Sci 170:1–11

    Article  CAS  Google Scholar 

  • Dorcey E, Urbez C, Blazquez MA, Carbonell J, Perez-Amador MA (2009) Fertilization-dependent auxin response in ovules triggers fruit development through the modulation of gibberellin metabolism in Arabidopsis. Plant J 58:318–332

    Article  PubMed  CAS  Google Scholar 

  • Dunwell JM, Thurling N (1985) Role of sucrose in microspore embryo production in Brassica napus ssp. oleifera. J Exp Bot 36:1478–1491

    Article  CAS  Google Scholar 

  • Emery RJN, Leport L, Barton JE, Turner NC, Atkins CA (1998) cis-Isomers of cytokinins predominate in chickpea seeds throughout their development. Plant Physiol 117:1515–1523

    Article  PubMed  CAS  Google Scholar 

  • Engvild KC, Egsgaard H, Larsen E (1981) Determination of 4-chloroindoleacetic acid methyl ester in Viciae species by gas chromatography–mass spectrometry. Physiol Plant 53:79–81

    Article  CAS  Google Scholar 

  • Ferrie AMR, Palmer CE, Keller WA (1995) Haploid embryogenesis. In: Thorpe TA (ed) In vitro embryogenesis in plants. Kluwer, Dordrecht, pp 309–344

    Chapter  Google Scholar 

  • Ferrie AMR, Taylor DC, MacKenzie SL, Keller WA (1999) Microspore embryogenesis of high sn-2 erucic acid Brassica oleracea germplasm. Plant Cell Tiss Organ Cult 57:79–84

    Article  CAS  Google Scholar 

  • Fizzell LA (1988) Biological effects of acoustic cavitation. In: Suslick KS (ed) Ultrasound. Its chemical, physical and biological effects. VCH, Weinheim, pp 287–304

  • Fleet CM, Sun T (2005) A delicate balance: the role of gibberellin in plant morphogenesis. Curr Opin Plant Biol 8:77–85

    Article  PubMed  CAS  Google Scholar 

  • Gao Y, Li T, Liu Y, Ren C, Zhao Y, Wang M (2010) Isolation and characterization of gene encoding G protein α subunit protein responsive to plant hormones and abiotic stresses in Brassica napus. Mol Biol Rep 37:3957–3965

    Article  PubMed  CAS  Google Scholar 

  • Ghanashyam C, Jain M (2009) Role of auxin-responsive genes in biotic stress responses. Plant Signal Behav 4:846–848

    Article  PubMed  CAS  Google Scholar 

  • Grewal RK, Lulsdorf M, Croser J, Ochatt S, Vandenberg A, Warkentin TD (2009) Doubled-haploid production in chickpea (Cicer arietinum L.): role of stress treatments. Plant Cell Rep 28:1289–1299

    Article  PubMed  CAS  Google Scholar 

  • Hirano K, Aya K, Hobo T, Sakakibara H, Kojima M, Shim RA, Hasegawa Y, Ueguchi-Tanaka M, Matsuoka M (2008) Comprehensive transcriptome analysis of phytohormone biosynthesis and signaling genes in microspore/pollen and tapetum of rice. Plant Cell Physiol 49:1429–1450

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra S, van Zijderveld MH, Heidekamp F, van der Mark F (1993) Microspore culture of Hordeum vulgare L.: the influence of density and osmolality. Plant Cell Rep 2:661–665

    Google Scholar 

  • Imamura J, Harada H (1980) Effects of abscisic acid and water stress on the embryo and plantlet production in anther culture of Nicotiana tabacum cv Samsun. Zeitschrift Pflanzenphysiol 100:285–289

    CAS  Google Scholar 

  • Jain M, Khurana JP (2009) Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice. FEBS J 276:3148–3162

    Article  PubMed  CAS  Google Scholar 

  • Jardinaud MF, Souvre A, Alibert G (1993) Transient GUS gene expression in Brassica napus electroporated microspores. Plant Sci 93:177–184

    Article  CAS  Google Scholar 

  • Joersbo M, Brunstedt J (1992) Sonication: a new method for gene transfer to plants. Physiol Plant 85:230–234

    Article  CAS  Google Scholar 

  • Kaltchuk-Santos E, Mariath JE, Mundstock E, Hu C, Bodanese-Zanettini MH (1997) Cytological analysis of early microspore divisions and embryo formation in cultured soybean anthers. Plant Cell Tiss Organ Cult 49:107–115

    Article  Google Scholar 

  • Kikuchi A, Sanuki N, Higashi K, Koshiba T, Kamada H (2006) Abscisic acid and stress treatment are essential for the acquisition of embryogenic competence by carrot somatic cells. Planta 223:637–645

    Article  PubMed  CAS  Google Scholar 

  • Laurain D, Tremouillaux-Guiller J, Chenieux JC (1993) Embryogenesis from micropsores of Gingko biloba L., a medicinal woody species. Plant Cell Rep 12:501–505

    Google Scholar 

  • Lionneton E, Beuret W, Delaitre C, Ochatt S, Rancillac M (2001) Improved microspore culture and doubled haploid plant regeneration in the brown condiment mustard (Brassica juncea). Plant Cell Rep 20:126–130

    Article  CAS  Google Scholar 

  • Maraschin SF, de Priester W, Spaink HP, Wang M (2005) Androgenic switch: an example of plant embryogenesis from the male gametophyte perspective. J Exp Bot 56:1711–1726

    Article  PubMed  CAS  Google Scholar 

  • Maraschin SF, Caspers M, Potokina E, Wulfert F, Graner A, Spaink HP, Wang M (2006) cDNA array analysis of stress-induced gene expression in barley androgenesis. Physiol Plant 127:535–550

    Article  CAS  Google Scholar 

  • Normanly J, Slovin JP, Cohen JD (1995) Rethinking auxin biosynthesis and metabolism. Plant Physiol 107:323–329

    PubMed  CAS  Google Scholar 

  • Ochatt S, Chand P, Rech EL, Davey MR, Power JB (1988) Electroporation-mediated improvement of plant regeneration from Colt cherry (Prunus avium × pseudocerasus) protoplast. Plant Sci 54:165–169

    Article  Google Scholar 

  • Ochatt S, Pech C, Grewal R, Conreux C, Lulsdorf M, Jacas L (2009) Abiotic stress enhances androgenesis from isolated microspores of some legume species (Fabaceae). J Plant Physiol 166:1314–1328

    Article  PubMed  CAS  Google Scholar 

  • Oetiker JH, Aeschbacher G (1997) Temperature-sensitive plant cells with shunted indole-3-acetic acid conjugation. Plant Physiol 114:1385–1395

    PubMed  CAS  Google Scholar 

  • Ostrowski M, Jakubowska A (2011) Purification and biochemical characterization of indole-3-acetyl-aspartic acid synthetase from immature seeds of pea (Pisum sativum). J Plant Growth Regul 30:30–40

    Article  CAS  Google Scholar 

  • Park J-E, Park J-Y, Kim Y-S, Staswick PE, Jeon J, Yun J, Kim S-Y, Kim J, Lee Y-H, Park C-M (2007) GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. J Biol Chem 282(13):10036–10046

    Article  PubMed  CAS  Google Scholar 

  • Park S, Ozga JA, Cohen JD, Reinecke DM (2010) Evidence of 4-Cl-IAA and IAA bound to proteins in pea fruit. J Plant Growth Regul 29:184–193

    Article  CAS  Google Scholar 

  • Quesnelle E, Emery RJN (2007) Cis-cytokinins that predominate in Pisum sativum during early embryogenesis will accelerate embryo growth in vitro. Can J Bot 85:91–103

    Article  Google Scholar 

  • Rashid A, Street HE (1974) Segmentations in microspores of Nicotiana tabacum which lead to embryoid formation in anther cultures. Protoplasma 80:323–324

    Article  Google Scholar 

  • Rech EL, Ochatt S, Chand P, Power JB, Davey MR (1987) Electro-enhancement of division of plant protoplast-derived cells. Protoplasma 141:169–176

    Article  Google Scholar 

  • Reinecke DM (1999) 4-Chloroindole-3-acetic acid and plant growth. Plant Growth Regul 27:3–13

    Article  CAS  Google Scholar 

  • Ribalta FM, Croser JS, Ochatt SJ (2012) Flow cytometry enables identification of sporophytic eliciting stress treatments in gametic cells. J Plant Physiol 169:104–110

    Article  PubMed  CAS  Google Scholar 

  • Ross ARS, Ambrose SJ, Cutler AJ, Feurtado JA, Kermode AR, Nelson K, Zhou R, Abrams SR (2004) Determination of endogenous and supplied deuterated abscisic acid in plant tissues by high performance liquid chromatography-electrospray ionization tandem mass spectrometry with multiple reaction monitoring. Anal Biochem 329:324–333

    Article  PubMed  CAS  Google Scholar 

  • Sáenz L, Azpeitia A, Oropeza C, Jones LH, Fuchsova K, Spichal L, Strnad M (2010) Endogenous cytokinins in Cocos nucifera L. in vitro cultures obtained from plumular explants. Plant Cell Rep 29:1227–1234

    Article  PubMed  Google Scholar 

  • Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Ann Rev Plant Biol 57:431–449

    Article  CAS  Google Scholar 

  • Sangwan-Norreel BS (1977) Androgenic stimulating factors in anther and isolated pollen grain culture of Datura innoxia Mill. J Exp Bot 28:843–852

    Article  Google Scholar 

  • Sasaki K, Shimomura K, Kamada H, Harada H (1994) IAA metabolism in embryogenic and non-embryogenic carrot cells. Plant Cell Physiol 35(8):1159–1164

    CAS  Google Scholar 

  • Segui-Simarro JM, Nuez F (2008) How microspores transform into haploid embryos: changes associated with embryogenesis induction and microspore-derived embryogenesis. Physiol Plant 134:1–12

    Article  PubMed  CAS  Google Scholar 

  • Shariatpanahi ME, Bal U, Heberle-Bors E, Touraev A (2006) Stresses applied for the re-programming of plant microspores towards in vitro embryogenesis. Physiol Plant 127:519–534

    Article  CAS  Google Scholar 

  • Simon S, Petrášek J (2011) Why plants need more than one type of auxin. Plant Sci 180:454–460

    Article  PubMed  CAS  Google Scholar 

  • Smykal P (2000) Pollen embryogenesis—the stress mediated switch from gametophytic to sporophytic development. Current status and future prospects. Biol Plant 4:481–489

    Article  Google Scholar 

  • Swain SM, Singh DP (2005) Tall tales from sly dwarves: novel functions of gibberellins in plant development. Trends Plant Sci 10:123–129

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M (1973) The effect of centrifugal treatment on the emergence of plantlets from cultured anthers of tobacco. Jpn J Breed 23:171–174

    Article  Google Scholar 

  • Tret’yakova IN, Ivanitskaya AC, Ivanova AN, Barsukova AV (2009) Phytohormone content in microstrobiles and androgenetic callus of Siberian larch. Russ J Plant Physiol 56:647–653

    Article  Google Scholar 

  • Tromas A, Perrot-Rechenmann C (2010) Recent progress in auxin biology. Comptes Rendus Biol 333:297–306

    Article  CAS  Google Scholar 

  • van Bergen S, Kottenhagen MJ, van der Meulen RM, Wang M (1999) The role of abscisic acid in induction of androgenesis: a comparative study between Hordeum vulgare L. cvs. Igri and Digger. J Plant Growth Regul 18:135–143

    Article  PubMed  Google Scholar 

  • Wang M, Hoekstra S, van Bergen S, Lamers GE, Oppedijk BJ, van der Heijden MW, de Priester W, Schilperoort RA (1999) Apoptosis in developing anthers and the role of ABA in this process during androgenesis in Hordeum vulgare L. Plant Mol Biol 39:489–501

    Article  PubMed  CAS  Google Scholar 

  • Wedzony M, Forster BP, Żur I, Golemiec E, Szechynska-Hebda M, Dubas E, Gotebiowska G (2009) Progress in doubled haploid technology in higher plants. In: Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher plants. Springer Science, New York, pp 1–33

  • Werner T, Schmülling T (2009) Cytokinin action in plant development. Curr Opin Plant Biol 12:527–538

    Article  PubMed  CAS  Google Scholar 

  • Zaharia LI, Galka MM, Ambrose SJ, Abrams SR (2005) Preparation of deuterated abscisic acid metabolites for use in mass spectrometry and feeding studies. J Labelled Compd Radiopharmaceut 48:435–445

    Article  CAS  Google Scholar 

  • Zaki MAM, Dickinson HG (1990) Structural changes during the first divisions of embryos resulting from anther and free microspore culture in Brassica napus. Protoplasma 56:149–162

    Article  Google Scholar 

  • Zavattieri MA, Frederico AM, Lima M, Sabino R, Arnholdt-Schmitt B (2010) Induction of somatic embryogenesis as an example of stress-related plant reactions. Electron J Biotechn 13(1). ISSN 0717-3458. http://www.ejbiotechnology.cl/content/vol13/issue1/full/4/index.html

  • Zhao Y (2010) Auxin biosynthesis and its role in plant development. Ann Rev Plant Biol 61:49–64

    Article  CAS  Google Scholar 

  • Żur I, Dubas E, Golemiec E, Szechyńska-Hebda M, Janowiak F, Wędzony M (2008) Stress-induced changes important for effective androgenic induction of isolated microspore culture of triticale (× Triticosecale Wittm.). Plant Cell Tiss Organ Cult 94:319–328

    Article  Google Scholar 

Download references

Acknowledgments

Financial support for this project was provided by the Saskatchewan Pulse Growers Association. We thank T. Ament, J. Chow, R. Grewal, S.B. Mudiyanselage, S. Tschirren, and J. Walsh for their endless hours of dissection. We also thank V. Cekic and M. Lafond (Plant Biotechnology Institute) for hormone profiling sample preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Lulsdorf.

Additional information

Communicated by Q. Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lulsdorf, M., Yuan, H.Y., Slater, S. et al. Androgenesis-inducing stress treatments change phytohormone levels in anthers of three legume species (Fabaceae). Plant Cell Rep 31, 1255–1267 (2012). https://doi.org/10.1007/s00299-012-1246-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-012-1246-8

Keywords

Navigation