Skip to main content
Log in

Effect of immersion cycles on growth, phenolics content, and antioxidant properties of Castilleja tenuiflora shoots

  • Micropropagation
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Castilleja tenuiflora, a species highly valued for its medicinal properties, is threatened in the wild. We evaluated the effects of six different immersion cycles in a temporary immersion bioreactor on C. tenuiflora shoot growth, proliferation rate, phenolics content, flavonoid content, and antioxidant activity. We also evaluated the regeneration capacity of the shoots. The highest proliferation rate (nine shoots per explant) was obtained using an immersion cycle of 5 min every 12 h, and the longest shoots (38.8 ± 1.9 mm) were obtained using an immersion cycle of 5 min every 24 h. Shoots obtained from immersion cycles of 30 min every 24 h or 5 min every 24 h showed 100% rooting efficiency. Shoots obtained from immersion cycles of 30 min every 3 h or 30 min every 12 h accumulated H2O2, developed abnormal stomata, and showed symptoms of hyperhydricity. These characteristics were associated with a low survival rate (16–80%) when the plants were transferred to potting mix. The shoots from an immersion cycle of 30 min every 24 h showed the highest total phenolics content, which coincided with the highest antioxidant activity in the 2,2′-azinobis (3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) free-radical scavenging assay (161.74 ± 10.06 μmol Trolox/g dry weight (DW)). The shoots from an immersion cycle of 5 min every 24 h showed the highest activity in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging assay, and those from an immersion cycle of 5 min every 3 h showed the strongest reducing power. These results show that temporary immersion culture represents a reliable and efficient method for in vitro micropropagation of C. tenuiflora.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.

Similar content being viewed by others

References

  • Albarran J, Bertrand B, Lartaud M, Etienne H (2005) Cycle characteristics in a temporary immersion bioreactor affect regeneration, morphology, water and mineral status of coffee (Coffea arabica) somatic embryos. Plant Cell Tissue Organ Cult 81:27–36

    Article  CAS  Google Scholar 

  • Alonso-Castro AJ, Villarreal ML, Salazar-Olivo LA, Gomez-Sanchez M, Dominguez F, Garcia-Carranca A (2011) Mexican medicinal plants used for cancer treatment: pharmacological, phytochemical and ethnobotanical studies. J Ethnopharmacol 133:945–972

    Article  CAS  PubMed  Google Scholar 

  • Ashraf MF, Abd Aziz M, Stanslas J, Kadir MA (2013) Optimization of immersion frequency and medium substitution on microtuberization of Chlorophytum borivilianum in RITA system on production of saponins. Process Biochem 48:73–77

    Article  CAS  Google Scholar 

  • Ayenew B, Tadesse T, Gebremariam E, Mengesha A, Tefera W (2013) Efficient use of temporary immersion bioreactor (TIB) on pineapple (Ananas comosus L.) multiplication and rooting ability. J Microbiol Biotechnol Food Sci 2:2456–2465

    CAS  Google Scholar 

  • Béjar E, Reyes-Chilpa R, Jiménez-Estrada M (2000) Bioactive compounds from selected plants used in the XVI century Mexican traditional medicine. In: Atta-ur-Rahman (ed) Studies in natural products chemistry, vol. 24. Elsevier, Amsterdam, pp 799–844

    Google Scholar 

  • Biblioteca Digital de la Medicina Tradicional Mexicana (2011) UNAM, México City, México. http://www.medicinatradicionalmexicana.unam.mx/index.php. Cited 5 Feb 2014

  • Diouf PN, Stevanovic T, Cloutier A (2009) Antioxidant properties and polyphenol contents of trembling aspen bark extracts. Wood Sci Technol 43:457–470

    Article  CAS  Google Scholar 

  • Escalona M, Lorenzo JC, González B, Daquinta M, González JL, Desjardins Y, Borroto CG (1999) Pineapple (Ananas comosus L. Merr) micropropagation in temporary immersion systems. Plant Cell Rep 18:743–748

    Article  CAS  Google Scholar 

  • Escalona M, Samson G, Borroto C, Desjardins Y (2003) Physiology of effects of temporary immersion bioreactors on micropropagated pineapple plantlets. In Vitro Cell Dev Biol Plant 39:651–656

    Article  CAS  Google Scholar 

  • Etienne H, Berthouly M (2002) Temporary immersion systems in plant micropropagation. Plant Cell Tissue Organ Cult 69:215–231

    Article  Google Scholar 

  • Etienne H, Lartaud M, Michaux-Ferriére N, Carron MP, Berthouly M, Teisson C (1997) Improvement of somatic embryogenesis in Hevea brasiliensis (Müll. Arg.) using the temporary immersion technique. In Vitro Cell Dev Biol Plant 33:81–87

    Article  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:150–158

    Article  Google Scholar 

  • Gómez-Aguirre YA, Zamilpa A, González M, Trejo-Tapia G (2012) Adventitious root cultures of Castilleja tenuiflora Benth. as a source of phenylethanoid glycosides. Ind Crop Prod 36:188–195

    Article  Google Scholar 

  • Hassannejad S, Bernard F, Mirzajani F, Gholami M (2012) SA improvement of hyperhydricity reversion in Thymus daenensis shoots culture may be associated with polyamines changes. Plant Physiol Biochem 51:40–46

    Article  CAS  PubMed  Google Scholar 

  • Holmgren NH (1976) Four new species of Mexican Castilleja (subgenus Castilleja, Scrophulariaceae) and their relatives. Brittonia 28:195–208

    Article  Google Scholar 

  • Ivanov I, Georgiev V, Georgiev M, Ilieva M, Pavlov A (2011) Galanthamine and related alkaloids production by Leucojum aestivum L. shoot culture using a temporary immersion technology. Appl Biochem Biotechnol 163:268–277

    Article  CAS  PubMed  Google Scholar 

  • López-Laredo A, Gómez-Aguirre Y, Medina-Pérez V, Salcedo-Morales G, Sepúlveda-Jiménez G, Trejo-Tapia G (2012) Variation in antioxidant properties and phenolics concentration in different organs of wild growing and greenhouse cultivated Castilleja tenuiflora Benth. Acta Physiol Plant 34:2435–2442

  • López-Laredo A, Ramírez-Flores F, Sepúlveda-Jiménez G, Trejo-Tapia G (2009) Comparison of metabolite levels in callus of Tecoma stans (L.) Juss. ex Kunth. cultured in photoperiod and darkness. In Vitro Cell Dev Biol Plant 45:550–558

    Article  Google Scholar 

  • Lorenzo J, González B, Escalona M, Teisson C, Borroto C (1998) Sugarcane shoot formation in an improved temporary immersion system. Plant Cell Tissue Organ Cult 54:197–200

    Article  CAS  Google Scholar 

  • Martínez-Bonfil B, Salcedo-Morales G, López-Laredo A, Ventura-Zapata E, Evangelista-Lozano S, Trejo-Tapia G (2011) Shoot regeneration and determination of iridoid levels in the medicinal plant Castilleja tenuiflora Benth. Plant Cell Tissue Organ Cult 107:195–203

    Article  Google Scholar 

  • Michoux F, Ahmad N, Hennig A, Nixon PJ, Warzecha H (2013) Production of leafy biomass using temporary immersion bioreactors: an alternative platform to express proteins in transplastomic plants with drastic phenotypes. Planta 237:903–908

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Neves C, Santos H, Vilas-Boas L, Amâncio S (2002) Involvement of free and conjugated polyamines and free amino acids in the adventitious rooting of micropropagated cork oak and grapevine shoots. Plant Physiol Biochem 40:1071–1080

    Article  CAS  Google Scholar 

  • Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 269:337–340

    Article  CAS  PubMed  Google Scholar 

  • Saher S, Piqueras A, Hellin E, Olmos E (2004) Hyperhydricity in micropropagated carnation shoots: the role of oxidative stress. Physiol Plant 120:152–161

    Article  CAS  PubMed  Google Scholar 

  • Salcedo-Morales G, Rosas-Romero G, Nabor-Correa N, Bermúdez-Torres K, López-Laredo AR, Trejo-Tapia G (2009) Propagation and conservation of Castilleja tenuiflora Benth. (“hierba del cáncer”) through in vitro culture. Polibotánica 28:119–137

    Google Scholar 

  • Scherer RF, Garcia AC, Fraga HPF, Vesco LLD, Steinmacher DA, Guerra MP (2013) Nodule cluster cultures and temporary immersion bioreactors as a high performance micropropagation strategy in pineapple (Ananas comosus var. comosus). Sci Hortic 151:38–45

    Article  CAS  Google Scholar 

  • Sreedhar RV, Venkatachalam L, Neelwarne B (2009) Hyperhydricity-related morphologic and biochemical changes in vanilla (Vanilla planifolia). J Plant Growth Regul 28:46–57

    Article  CAS  Google Scholar 

  • Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley–powdery mildew interaction. Plant J 11:1187–1194

    Article  CAS  Google Scholar 

  • Trejo-Tapia G, Rosas-Romero G, López-Laredo AR, Bermúdez-Torres K, Zamilpa A (2012) In vitro organ cultures of the cancer herb Castilleja tenuiflora Benth. as potential sources of iridoids and antioxidant compounds. In: Orhan I (ed) Biotechnological production of plant secondary metabolites. Bentham Science, Sharjah, pp 87–106

    Google Scholar 

  • Viu AFM, Viu MAO, Tavares AR, Vianello F, Lima GPP (2009) Endogenous and exogenous polyamines in the organogenesis in Curcuma longa L. Sci Hortic 121:501–504

    Article  CAS  Google Scholar 

  • Zhao Y, Sun W, Wang Y, Saxena PK, Liu CZ (2012) Improved mass multiplication of Rhodiola crenulata shoots using temporary immersion bioreactor with forced ventilation. Appl Biochem Biotechnol 166:1480–1490

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Secretaría de Investigación y Posgrado del IPN-México (SIP–IPN Grants 20131786) and by the Fondo Mixto de Fomento a la Investigación Científica y Tecnológica CONACYT–Gobierno del Estado de Morelos (Grant MOR-2007-C01-79409). The funding sources were not involved in the preparation of this paper or in the decision to submit it for publication. RVT is indebted to the CONACYT and PIFI-IPN for the Master in Sciences fellowship awarded. GTT, JLTE, and ARLL are grateful to the Sistema de Becas por Exclusividad (IPN) and Programa de Estímulos al Desempeño de los Investigadores (IPN).

Conflict of interest

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Trejo-Tapia.

Additional information

Editor: Praveen Saxena

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valdez-Tapia, R., Capataz-Tafur, J., López-Laredo, A.R. et al. Effect of immersion cycles on growth, phenolics content, and antioxidant properties of Castilleja tenuiflora shoots. In Vitro Cell.Dev.Biol.-Plant 50, 471–477 (2014). https://doi.org/10.1007/s11627-014-9621-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-014-9621-5

Keywords

Navigation