Skip to main content
Log in

Effects of calcium on the activities of cytosolic antioxidative enzymes and IAA oxidase during in vitro adventitious rooting of mung bean seedlings

  • Physiology
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

The effects of Ca2+ on antioxidative enzymes and indole-3-acetic acid (IAA) oxidase during adventitious rooting were investigated in mung bean (Vigna radiata). CaCl2 significantly promoted the formation and growth of adventitious roots. EGTA (a Ca2+ chelator) or ruthenium red (a Ca2+-channel blocker) significantly inhibited root formation and growth, but these inhibitory effects could be partially reversed by CaCl2. Furthermore, inclusion of 5 mM CaCl2 significantly increased superoxide dismutase (SOD) activity by 10% at 3 h and catalase (CAT) activity by an average of 29.6% at each time point. CaCl2 decreased peroxidase (POD) activity by 9.4% and 21% at 12 and 24 h, respectively, and ascorbate peroxidase (APX) activity by an average of 13.9% at each time point. These CaCl2-induced changes in enzymatic activities were similar to changes caused by indole-3-butyric acid (IBA). Treatment with EGTA or ruthenium red decreased SOD activity by an average of 18.4% and 15.2%, respectively; POD activity by 27.4% and 57.6%, respectively; APX activity by 10.3% and 15.6%, respectively; and CAT activity by 19.3% and 5.2%, respectively, when compared with CaCl2. In addition, CaCl2 increased IAA oxidase activity by an average of 5.5% beginning at 6 h, whereas EGTA significantly decreased IAA oxidase activity by 29.2%, 22.9%, and 13.5% at 6, 9, and 12 h, respectively. The inhibitory effects of EGTA could be partially suppressed by addition of CaCl2. These results imply that the stimulative effect of Ca2+ on adventitious rooting is partially related to Ca2+-induced changes in the activities of antioxidative enzymes and IAA oxidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Agarwal S.; Sairam R. K.; Srivastava G. C.; Tyagi A.; Meena R. C. Role of ABA, salicylic acid, calcium and hydrogen peroxide on antioxidative enzymes induction in wheat seedlings. Plant Sci. 169: 559–570; 2005.

    Article  CAS  Google Scholar 

  • Batish D. R.; Singh H. P.; Kaur S.; Kohli R. K.; Yadav S. S. Caffeic acid affects early growth, and morphogenetic response of hypocotyl cuttings of mung bean (Phaseolus aureus). J. Plant Physiol. 165: 297–305; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Bellamine J.; Penel C.; Greppin H.; Gaspar T. Confirmation of the role of auxin and calcium in the late phases of adventitious root formation. Plant Growth Regul. 26: 191–194; 1998.

    Article  CAS  Google Scholar 

  • Chao I. L.; Cho C. L.; Chen L. M.; Liu Z. H. Effect of indole-3-butyric acid on the endogenous indole-3-acetic acid and lignin contents in soybean hypocotyl during adventitious root formation. J. Plant Physiol. 158: 1257–1262; 2001.

    Article  CAS  Google Scholar 

  • Chen L. M.; Cheng J. T.; Chen E. L.; Yiu T. J.; Liu Z. H. Naphthaleneacetic acid suppresses peroxidase activity during the induction of adventitious roots in soybean hypocotyls. J. Plant Physiol. 159: 1349–1354; 2002.

    Article  CAS  Google Scholar 

  • De Gara L.; Paciolla C.; De Tullio M. C.; Motto M.; Arrigoni O. Ascorbate dependent hydrogen peroxide detoxification and ascorbate regeneration during germination of a highly productive maize hybrid: evidence of an improved detoxification mechanism against reactive oxygen species. Physiol. Plant. 109: 7–13; 2000.

    Article  Google Scholar 

  • De Klerk G. J.; Krieken W. V. D.; Jong J. The formation of adventitious roots: new concepts, new possibilities. In Vitro Cell. Dev. Biol. Plant 35: 189–199; 1999.

    Article  Google Scholar 

  • Falasca G.; Zaghi D.; Possenti M.; Altamura M. M. Adventitious root formation in Arabidopsis thaliana thin cell layers. Plant Cell Rep. 23: 17–25; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Gazaryan I. G.; Chubar T. A.; Mareeva E. A.; Lagrimini L. M.; Vanhuystee R. B.; Thorneley R. N. F. Aerobic oxidation of indole-3-acetic acid catalyzed by anionic and cationic peanut peroxidase. Phytochemistry 51: 175–186; 1999.

    Article  CAS  Google Scholar 

  • Gong M.; Li Y. J.; Dai X.; Tian M.; Li Z. G. Involvement of calcium and calmodulin in the acquisition of HS induced thermotolerance in maize seedlings. J. Plant Physiol. 150: 615–621; 1997.

    Article  CAS  Google Scholar 

  • Hatzilazarou S. P.; Syros T. D.; Yupsanis T. A.; Bosabalidis A. M.; Economou A. S. Peroxidases, lignin and anatomy during in vitro and ex vitro rooting of gardenia (Gardenia jasminoides Ellis) microshoots. J. Plant Physiol. 163: 827–836; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Hepler P. K. Calcium: a central regulator of plant growth and development. Plant Cell 17: 2142–2155; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Hu X.; Jiang M.; Zhang J.; Zhang A.; Lin F.; Tan M. Calcium–calmodulin is required for abscisic acid-induced antioxidative defense and functions both upstream and downstream of H2O2 production in leaves of maize (Zea mays) plants. New Phytol. 173: 27–38; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Li S. W.; Xue L. The interaction between H2O2 and NO, Ca2+, cGMP, and MAPKs during adventitious rooting in mung bean seedlings. In Vitro Cell. Dev. Biol. Plant 46: 142–148; 2010.

    Article  CAS  Google Scholar 

  • Li S. W.; Xue L.; Xu S.; Feng H.; An L. IBA-induced changes in antioxidative enzymes during adventitious rooting in mung bean seedlings: the role of H2O2. Environ. Exp. Bot. 66: 442–450; 2009.

    Article  CAS  Google Scholar 

  • Mato M. C.; Rua M. L.; Ferro E. Changes in levels of peroxidases and phenolics during root formation in Vitis cultured in vitro. Physiol. Plant. 72: 84–88; 1988.

    Article  CAS  Google Scholar 

  • Metaxas D.; Syros T.; Yupsanis T.; Economou A. S. Peroxidases during adventitious rooting in cuttings of Arbutus unedo and Taxus baccata as affected by plant genotype and growth regulator treatment. Plant Growth Regul. 44: 257–266; 2004.

    Article  CAS  Google Scholar 

  • Nag S.; Saha K.; Choudhuri M. A. Role of auxin and polyamines in adventitious root formation in relation to changes in compounds involved in rooting. J. Plant Growth Regul. 20: 182–194; 2001.

    Article  CAS  Google Scholar 

  • Pei Z. M.; Murata Y.; Benning G.; Thomine S.; Klusener B.; Allen G. T.; Grill E.; Schroeder J. I. Calcium channels activated by hydrogen peroxide mediate abscisic signaling in guard cells. Nature 406: 731–734; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Pinto M. C.; Tommasi F.; De Gara L. Enzymes of the ascorbate biosynthesis and ascorbate-glutathione cycle in cultured cells of tobacco Bright Yellow 2. Plant Physiol. Biochem. 38: 541–550; 2000.

    Article  Google Scholar 

  • Polle A.; Otter T.; Seifert F. Apoplastic peroxidases and lignification in needles of Norway spruce (Picea abies L.). Plant Physiol. 106: 53–60; 1994.

    PubMed  CAS  Google Scholar 

  • Pythoud F.; Buchala A. J. Peroxidase activity and adventitious rooting in cuttings of Populus tremula L. Plant Physiol. Biochem. 27: 503–510; 1989.

    CAS  Google Scholar 

  • Quiroga M.; Guerrero C.; Botella M. A.; Barceló A.; Amaya I.; Medina M. I.; Alonso F. J.; Forchetti S. M.; Tigier H.; Valpuesta V. A tomato peroxidase involved in the synthesis of lignin and suberin. Plant Physiol. 122: 1119–1127; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Racchi M. L.; Bagnoli F.; Balla I.; Danti S. Differential activity of catalase and superoxide dismutase in seedlings and in vitro micropropagated oak (Quercus robur L.). Plant Cell Rep. 20: 169–174; 2001.

    Article  CAS  Google Scholar 

  • Rao M. V.; Paliyath G.; Ormrod D. P.; Murr D. O.; Watkins C. B. Influence of salicylic acid on H2O2 production, oxidative, stress, and H2O2-metabolizing enzymes. Plant Physiol. 115: 137–149; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Rout G. R. Effect of auxins on adventitious root development from single node cuttings of Camellia sinensis (L.) Kuntze and associated biochemical changes. Plant Growth Regul. 48: 111–117; 2006.

    Article  CAS  Google Scholar 

  • Rout G. R.; Samantaray S.; Das P. Root induction in microshoots of Simarouba glauca L. in vitro: peroxidase as a marker for rooting. Silvae Genet 48: 14–17; 1999.

    Google Scholar 

  • Sato Y.; Sugiyama M.; Górecki R. J.; Fukuda H.; Komamine A. Interrelationship between lignin deposition and the activities of peroxidase isoenzymes in differentiating tracheary elements of Zinnia. Planta 189: 584–589; 1993.

    Article  CAS  Google Scholar 

  • Singh H. P.; Kaur S.; Batish D. R.; Kohli R. K. Caffeic acid inhibits in vitro rooting in mung bean [Vigna radiata (L.) Wilczek] hypocotyls by inducing oxidative stress. Plant Growth Regul 57: 21–30; 2009.

    Article  CAS  Google Scholar 

  • Sorin C.; Bussell J. D.; Camus I.; Ljung K.; Kowalczyk M.; Geiss G.; McKhann H.; Garcion C.; Vaucheret H.; Sandberg G.; Bellini C. Auxin and light control of adventitious rooting in Arabidopsis require ARGONAUTE1. Plant Cell 17: 1343–1359; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Sorin C.; Negroni L.; Balliau T.; Corti H.; Jacquemot M. P.; Davanture M.; Sandberg G.; Zivy M.; Bellini C. Proteomic analysis of different mutant genotypes of Arabidopsis led to the identification of 11 proteins correlating with adventitious root development. Plant Physiol. 140: 349–364; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Spychalla J. P.; Desborough S. L. Superoxide dismutase, catalase and alpha tocopherol content of stored potato tubers. Plant Physiol. 94: 1214–1218; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Syros T.; Yupsanis T.; Zafiriadis H.; Economou A. Activity and isoforms of peroxidases, lignin and anatomy, during adventitious rooting in cuttings of Ebenus cretica L. J. Plant Physiol. 161: 69–77; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Toyota M.; Furuichi T.; Tatsumi H.; Sokabe M. Cytoplasmic calcium increases in response to changes in the gravity vector in hypocotyls and petioles of Arabidopsis seedlings. Plant Physiol. 146: 505–514; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Tyburski J.; Jasionowicz P.; Tretyn A. The effects of ascorbate on root regeneration in seedling cuttings of tomato. Plant Growth Regul. 48: 157–173; 2006.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (31260090 and 30960063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Weng Li.

Additional information

Editor: J. Finer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, SW., Feng, L. & Zeng, XY. Effects of calcium on the activities of cytosolic antioxidative enzymes and IAA oxidase during in vitro adventitious rooting of mung bean seedlings. In Vitro Cell.Dev.Biol.-Plant 49, 750–758 (2013). https://doi.org/10.1007/s11627-013-9553-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-013-9553-5

Keywords

Navigation