Skip to main content
Log in

Caffeic acid inhibits in vitro rooting in mung bean [Vigna radiata (L.) Wilczek] hypocotyls by inducing oxidative stress

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Caffeic acid (CA), which is ubiquitously present in plants, is a potent phytotoxin affecting plant growth and physiology. The aim of our study was to investigate whether CA-induced inhibition of adventitious root formation (ARF) in mung bean {Vigna radiata (L.) Wilczek [Phaseolus aureus Roxb.]} involves the induction of conventional stress responses. The effect of CA (0–1000 μM) on ARF in mung bean was determined by measuring the generation of reactive oxygen species (ROS) in terms of malondialdehyde and hydrogen peroxide (H2O2) content, root oxidizability and changes in levels of antioxidant enzymes. Our results show that CA significantly enhanced MDA content, indicating severe lipid peroxidation, and increased H2O2 accumulation and root oxidizability in the lower rooted hypocotylar region (LRHR) of mung bean, thereby inducing oxidative stress and cellular damage. In response to CA, there was a significant upregulation in the activities of scavenging enzymes, such as superoxide dismutase, ascorbate peroxidase, guaiacol peroxidase, catalase and glutathione reductase, in LRHRs of mung bean. Based on these results, we conclude that CA inhibits ARF in mung bean hypocotyls by inducing ROS-generated oxidative stress and upregulating the activities of antioxidant enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

ARF:

Adventitious root formation

CA:

Caffeic acid

CAT:

Catalase

EDTA:

Ethylenediaminetetraacetic acid

EU:

Enzyme unit

FW:

Fresh weight

GPx:

Guaiacol peroxidase

GR:

Glutathione reductase

GSH:

Glutathione reduced

GSSG:

Glutathione oxidized

H2O2 :

Hydrogen peroxide

LP:

Lipid peroxidation

LRHR:

Lower rooted hypocotylar region

MDA:

Malondialdehyde

NADPH:

Nicotinamide adenine dinucleotide phosphate reduced

NBT:

Nitroblue tetrazolium

PE:

Post-expression stage

PO4 3− :

Phosphate

RE:

Root expression stage

RI:

Root initiation stage

RO:

Root oxidizability

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TBARS:

Thiobarbituric acid reactive substance

TTC:

2,3,5-Triphenyl tetrazolium chloride salt

References

  • Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot 97:888–893

    Article  CAS  Google Scholar 

  • Bais HP, Vepachedu R, Gilroy S, Callaway RM, Vivanco JM (2003) Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301:1377–1380

    Article  PubMed  CAS  Google Scholar 

  • Ballester A, San-José MC, Vidal N, Fernández-Lorenzo JL, Viéitez AM (1999) Anatomical and biochemical events during in vitro rooting of microcuttings from juvenile and mature phases of chestnut. Ann Bot 83:619–629

    Article  CAS  Google Scholar 

  • Barkosky RR, Einhellig FA, Butler JL (2000) Caffeic acid-induced changes in plant-water relationships and photosynthesis in leafy spurge (Euphorbia esula L.). J Chem Ecol 26:2095–2109

    Article  CAS  Google Scholar 

  • Batish DR, Singh HP, Setia N, Kaur S, Kohli RK (2006) 2-Benzoxazolinone (BOA) induced oxidative stress, lipid peroxidation and changes in some antioxidant enzyme activities in mung bean (Phaseolus aureus). Plant Physiol Biochem 44:819–827

    Article  PubMed  CAS  Google Scholar 

  • Batish DR, Singh HP, Kaur S, Kohli RK, Yadav SS (2008) Caffeic acid affects early growth, and morphogenetic response of hypocotyl cuttings of mung bean (Phaseolus aureus). J Plant Physiol 165:297–305

    Article  PubMed  CAS  Google Scholar 

  • Baziramakenga R, Leroux GD, Simard RR (1995) Effects of benzoic and cinnamic acids on membrane permeability of soybean roots. J Chem Ecol 21:1271–1285

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–286

    Article  PubMed  CAS  Google Scholar 

  • Blakesley D, Weston GD, Hall JF (1991) The role of endogenous auxin in root initiation: evidence from studies on auxin application and analysis of endogenous levels. Plant Growth Regul 10:1–12

    Article  CAS  Google Scholar 

  • Cakmak I, Marschner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves. Plant Physiol 98:1222–1227

    Article  PubMed  CAS  Google Scholar 

  • Curir P, Vansumere CF, Termini A, Barthe P, Marchesini A, Dolci M (1990) Flavonoid accumulation is correlated with adventitious roots formation in Eucalyptus gunni Hook. micropropagated through axillary bud stimulation. Plant Physiol 92:1148–1153

    Article  PubMed  CAS  Google Scholar 

  • Doblinski PMF, Ferrarese MLL, Huber DA, Scapim CA, Braccini AL, Ferrarese-Filho O (2003) Peroxidase and lipid peroxidation of soybean roots in response to p-coumaric and p-hydroxybenzoic acids. Braz Arch Biol Technol 46:193–198

    Article  CAS  Google Scholar 

  • Egley GH, Paul RN, Vaughn KC, Duke SO (1983) Role of peroxidase in the development of water impermeable seed coats in Sida spinosa L. Planta 157:224–232

    Article  CAS  Google Scholar 

  • Foyer CH, Halliwell B (1976) Presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    Article  Google Scholar 

  • Gapper C, Dolan L (2006) Control of plant development by reactive oxygen species. Plant Physiol 141:341–345

    Article  PubMed  CAS  Google Scholar 

  • Glass ADM, Dunlop J (1974) Influence of phenolic acids on ion uptake IV. Depolarization of membrane potentials. Plant Physiol 54:855–858

    Article  PubMed  CAS  Google Scholar 

  • Gratäo PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts I Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  PubMed  CAS  Google Scholar 

  • Imin N, Nizamidin M, Wu T, Rolfe BG (2007) Factors involved in root formation in Medicago truncatula. J Exp Bot 58:439–451

    Article  PubMed  CAS  Google Scholar 

  • Ju D, Sun Y, Xiao CL, Shi K, Zhou YH, Yu JQ (2007) Physiological basis of different allelopathic reactions of cucumber and figleaf gourd plants to cinnamic acid. J Exp Bot 58:3765–3773

    Article  CAS  Google Scholar 

  • Kwak J, Nguyen V, Schroeder J (2006) The role of reactive oxygen species in hormonal responses. Plant Physiol 141:323–329

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Rendall RJ (1951) Protein estimation with folin-phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Maffei M, Bertea CM, Garneri F, Scannerini S (1999) Effect of benzoic acid hydroxy and methoxy ring substituents during cucumber (Cucumis sativus L.) germination. I. Isocitrate lyase and catalase activity. Plant Sci 141:139–147

    Article  CAS  Google Scholar 

  • Maness P-C, Smolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby WA (1999) Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol 65:4094–4098

    PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Montillet J-L, Chamnongpol S, Rustérucci C, Dat J, Van de Cotte B, Agnel J-P, Battesti C, Inzé D, Van Breusegem F, Triantaphylidès C (2005) Fatty acid hydroperoxides and H2O2 in the execution of hypersensitive cell death in tobacco leaves. Plant Physiol 38:1516–1526

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Singh HP, Batish DR, Kaur S, Arora K, Kohli RK (2006) α-Pinene inhibits growth and induces oxidative stress in roots. Ann Bot 98:1261–1270

    Article  PubMed  CAS  Google Scholar 

  • Singh HP, Batish DR, Kohli RK, Arora K (2007) Arsenic-induced root growth inhibition in mung bean (Phaseolus aureus Roxb.) is due to oxidative stress resulting from enhanced lipid peroxidation. Plant Growth Regul 53:65–73

    Article  CAS  Google Scholar 

  • Sorin C, Bussell JD, Camus I, Ljung K, Kowalczyk M, Geiss G, McKhann H, Garcion C, Vaucheret H, Sandberg G, Bellini C (2005) Auxin and light control of adventitious rooting in Arabidopsis require ARGONAUTE1. Plant Cell 17:1343–1359

    Article  PubMed  CAS  Google Scholar 

  • Sorin C, Negroni L, Balliau T, Corti H, Jacquemot M-P, Davanture M, Sandberg G, Zivy M, Bellini C (2006) Proteomic analysis of different mutant genotypes of Arabidopsis led to the identification of 11 proteins correlating with adventitious root development. Plant Physiol 140:349–364

    Article  PubMed  CAS  Google Scholar 

  • Stone JR, Yang S (2006) Hydrogen peroxide: a signaling messenger. Antioxidant Redox Signal 8:243–270

    Article  CAS  Google Scholar 

  • Tamimi SM (2003) Stimulation of adventitious root formation in non-woody stem cuttings by uridine. Plant Growth Regul 40:257–260

    Article  CAS  Google Scholar 

  • Tartoura K, da Rocha A, Youssef S (2004) Synergistic interaction between coumarin 1, 2-benzopyrone and indole-3-butyric acid in stimulating adventitious root formation in Vigna radiata (L) Wilczek cuttings: I. Endogenous free and coniugated IAA and basic isoperoxidases. Plant Growth Regul 42:253–262

    Article  CAS  Google Scholar 

  • Tewari RK, Lee SY, Hahn EJ, Paek KY (2007) Temporal changes in the growth, saponin content and antioxidant defense in the adventitious roots of Panax ginseng subjected to nitric oxide elicitation. Plant Biotechnol Rep 1:227–235

    Article  Google Scholar 

  • Tewari RK, Hahn EJ, Paek KY (2008) Function of nitric oxide and superoxide anion in the adventitious root development and antioxidant defence in Panax ginseng. Plant Cell Rep 27:563–573

    Article  PubMed  CAS  Google Scholar 

  • Thipyapong P, Hunt M, Steffens J (1995) Systemic wound induction of potato (Solanum tuberosum) polyphenoloxidase. Phytochemistry 40:673–676

    Article  CAS  Google Scholar 

  • Tiwari BS, Belenghi B, Levine A (2002) Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. Plant Physiol 128:1271–1281

    Article  PubMed  CAS  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Weir TL, Park S-W, Vivanco JM (2004) Biochemical and physiological mechanisms mediated by allelochemicals. Curr Opin Plant Biol 7:472–479

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Harminder Pal Singh or Daizy R. Batish.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, H.P., Kaur, S., Batish, D.R. et al. Caffeic acid inhibits in vitro rooting in mung bean [Vigna radiata (L.) Wilczek] hypocotyls by inducing oxidative stress. Plant Growth Regul 57, 21–30 (2009). https://doi.org/10.1007/s10725-008-9314-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-008-9314-3

Keywords

Navigation